Дискретная стохастическая модель оптимизации начального запаса.
Дискретная стохастическая модель оптимизации начального запаса. - раздел Философия, Общее понятие имитационного моделирования экономических процессов Мы Отказываемся От Предположения О Постоянстве И Детерминированности Величин...
Мы отказываемся от предположения о постоянстве и детерминированности величины спроса на товар и предполагаем известным распределение величины спроса.
Пусть S — размер запаса на начало периода планирования;
D — величина спроса за период планирования (целое число);
Н — удельные издержки хранения за период;
В — удельные издержки дефицита за период;
p(D)— вероятность того, что величина спроса за период планирования составит D.
Функция распределения величины спроса F(x) = р (D < х) = .
В случае когда величина спроса за период планирования превышает размер запаса (D > S), возникает дефицит и соответствующие издержки дефицита. Если запас больше, чем величина спроса (S > D), то возникают издержки хранения. Математическое ожидание C1(S) величины издержек хранения за период планирования для размера начального запаса S можно оценить следующим образом:
Математическое ожидание С2(S) величины издержек дефицита за период планирования для размера начального запаса S можно оценить следующим образом:
Математическое ожидание C(S) совокупных издержек в этом случае имеет вид
В стохастической модели оптимальным является такой размер начального запаса S*, при котором математическое ожидание совокупных издержек C(S*) имеет минимальное значение, т.е. такой размер запаса S*, который удовлетворяет условию
Если и оптимальными являются как размер запаса S*, так и размер запаса S* + 1.
Основные понятия... Объектно ориентированное моделирование ООМ предполагает поддержку классов и... Класс определяет некоторый шаблон или прототип блока например бассейн вообще Оперируя с классом например Бассейн...
Пакеты визуального моделирования
Пакеты визуального моделирования позволяют пользователю вводить описание моделируемой системы в естественной для прикладной области и преи
Численное решение
Традиционная технология численного моделирования требует весьма аккуратного выбора и настройки численного метода (иногда даже несколько раз по ходу решения) и тщательного исследования погрешности р
Оптимизация заданной целевой функции.
Модели экономических процессов разрабатываются с целью оптимизации заданной целевой функции при некоторой совокупности ограничений. Термин “оптимизация” обычно используется для обозначения процессо
Этапы исследования экономических процессов.
Работа, выполняемая в процессе исследования, состоит из следующих этапов:
1) идентификации проблемы;
2) построения модели;
3) решения поставленной задачи с помощью модели
Сетевая модель.
Сетевая модель отображает взаимосвязи между операциями и порядок их выполнения.
Для представления операции используется стрелка, направление которой соответствует процессу
Правила построения сетевой модели.
Правило 1. Каждая операция в сети представляется одной и только одной дугой(стрелкой).
Ни одна из операций не должна появляться в модели дважды. При этом следует различать случай, к
Имитационное моделирование управления запасами
Существует проблема классификации имеющихся в наличии запасов. Для решения этой задачи используется методика административного наблюдения. Цель ее заключается в определении той части запасов фирмы
Простейшая модель оптимального размера заказа.
Предположим, что:
1) темп спроса на товар известен и постоянен;
2) получение заказа мгновенно;
3) закупочная цена не зависит от размера заказа;
4) дефицит не доп
Модель оптимального размера заказа с производством.
Предположим, что:
1) темп спроса на товар известен и постоянен;
2) темп производства товара известен и постоянен;
3) время выполнения заказа известно и постоянно;
Модель оптимального размера заказа с дефицитом.
Предположим, что:
1) темп спроса на товар известен и постоянен;
2) время выполнения заказа известно и постоянно;
3) закупочная цена не зависит от размера заказа.
Основы теории матричных игр
Методы, основанные на теории игр, используются для принятия решений в условиях неопределенности. Игра — это математическая модель конфликтной ситуации, которая предполагает наличие следующи
Матричная игра двух лиц с нулевой суммой
В игре двух лиц с нулевой суммой (такую игру называют также антагонистической) принимают участие два игрока: игрок 1 и игрок 2. В распоряжении каждого из них имеется множество страт
Матричная игра двух лиц с ненулевой постоянной суммой
Конечная игра, в которой сумма выигрышей обоих игроков не равна нулю и постоянна для всех сочетаний их чистых стратегий, называется матричной игрой двух лиц с ненулевой постоянной суммой. Пусть
Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Новости и инфо для студентов