рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

В форме экзамена

В форме экзамена - раздел Науковедение, Перечень вопросов для проведения промежуточной аттестации По дисциплине ОП.05 Материаловедение 4 Семестр ...

4 семестр

1. Строение и свойства металлов.

Характерными свойствами металлов являются наличие металлического блеска и пластичности, высокая электро- и теплопроводность. Характерные свойства металлов обусловлены их строением. Атомы металлов не однородны. Атом состоит из положительно заряженного тяжелого ядра, и окружающих ядро отрицательно заряженных электронов. Число электронов равно порядковому номеру элемента в таблице Д.И. Менделеева. В ядре атома находятся положительно заряженные элементарные частицы, называемые протонами. Электроны быстро вращаются вокруг ядра. Внешние, так называемые валентные, электроны у всех металлов относительно слабо связаны с ядром. Слабой связью внешних валентных электронов с ядром и объясняются характерные металлические свойства.

 

2. Дефекты кристаллического строения металлов.

Все дефекты кристаллической решетки принято делить на точечные, линейные, поверхностные и объемные. Точечные дефекты соизмеримы с размерами атомов. К ним относятся вакансии, т. е. незаполненные узлы решет­ки, межузельные атомы данного металла (рис 1.8), примесные атомы замещения, т. е. атомы, по диаметру соизмеримые с атомами данного металла и примесные атомы внедрения, имеющие очень малые размеры и поэтому находящиеся в междоузлиях (рис 1.9). Влияние этих дефектов на прочность металла может быть различным в зависимости от их ко­личества в единице объема и характера. Линейные дефекты имеют длину, значительно превышаю­щую их поперечные размеры. К ним относятся дислокации, т. е. дефекты, образующиеся в решетке в результате смещений кристаллографических плоскостей. Поверхностные дефекты включают в себя главным образом границы зерен (рис.1.13). На границах кристаллическая решетка сильно искажена. В них скапливаются перемещающиеся изнутри зерен дислокации. Объемные дефекты кристаллической решетки включают трещины и поры. Наличие данных дефектов, уменьшая плотность металла, снижает его прочность. Кроме того, трещины являются сильными концентратора­ми напряжений, в десятки и более раз повышающими напря­жения создаваемые в металле рабочими нагрузками. По­следнее обстоятельство наиболее существенно влияет на прочность металла.

 

3. Механические свойства материалов и основные методы их определения.

Наиболее распространенными механическими характеристиками являются: твердость, пределы прочности и упругости, ударная вязкость. Твёрдость — свойство материала сопротивляться внедрению в него другого, более твёрдого тела — индентора. Наиболее распространенные методы определения твердости связаны с внедрением специального тела, называемого индентором, в испытуемый материал с таким усилием, чтобы в материале остался отпечаток индентора. Ударная вязкость — способность материала поглощать механическую энергию в процессе деформации и разрушения под действием ударной нагрузки. Для определения ударной вязкости используют образцы с надрезом, который служит концентратором напряжений. Образец устанавливают на маятниковом копре так, чтобы удар маятника происходил против надреза, раскрывая его. Маятник поднимают на высоту, при падении он разрушает образец, поднимаясь на высоту (так как часть запасенной при подъеме работы тратится на разрушение образца).

4. Металлические сплавы и диаграммы состояния.

Металлическим сплавом называется материал, полученный сплавлением двух или более металлов или металлов с неметаллами, обла­дающий металлическими свойствами. Поэтому в этом спла­ве возможно образование трех фаз: жидкого сплава Ж, кристаллов А и кристаллов В. Линия АСВ диаграммы является линией ликвидус: на участке АС при охлаждении начинается кристаллизация компонента А, а на участке СD — компонента В. Линия DСВ является линией солидус, на ней завершается кристаллизация А или В и при постоян­ной температуре происходит кристаллизация эвтектики Э. Сплавы концентрация которых соответствует точке С диаграммы называются эвтектическими, их структура представляет собой чистую эвтектику.

5. Железо и его сплавы: состав и свойства.

ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. Собственно, железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес. % углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром, марганец, никель и др.).

6. Диаграмма состояния сплавов железа с углеродом.

Диаграмма фазового равновесия (диаграмма состояния) железо-углерод (иногда говорят железо-цементит) — графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры.

1. Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы. 2. Феррит — Твёрдый раствор внедрения углерода в α-железе с ОЦК (объёмно-центрированной кубической) решёткой. 3. Аустенит (γ) — твёрдый раствор внедрения углерода в γ-железе с ГЦК (гране-центрированной кубической) решёткой. Цементит (Fe3C) — химическое соединение железа с углеродом (карбид железа), со сложной ромбической решёткой, содержит 6,67 % углерода. 5. Графит — фаза состоящая только из углерода со слоистой гексагональной решёткой.

7. Механические испытания металлов.

8. Технологические испытания металлов.

9. Методы исследования структуры металлов и сплавов.

10. Физические методы исследования сплавов.

11. Чугун: классификация, структура, маркировка и применение.

Чугу́н — сплав железа с углеродом с содержанием более 2,14 % (точка предельной растворимости углерода в аустените на диаграмме состояний). В зависимости от содержания углерода серый чугун называется доэвтектическим (2,14-4,3 % углерода), эвтектическим (4,3 %) или заэвтектическим (4,3-6,67 %). Состав сплава влияет на структуру материала.

В промышленности разновидности чугуна маркируются следующим образом:

· передельный чугун — П1, П2;

· передельный чугун для отливок (передельно-литейный) — ПЛ1, ПЛ2,

· передельный фосфористый чугун — ПФ1, ПФ2, ПФ3,

· передельный высококачественный чугун — ПВК1, ПВК2, ПВК3;

· чугун с пластинчатым графитом — СЧ (цифры после букв «СЧ», обозначают величину временного сопротивления разрыву в кгс/мм);

· антифрикционный чугун

· антифрикционный серый — АЧС,

· антифрикционный высокопрочный — АЧВ,

· антифрикционный ковкий — АЧК;

· чугун с шаровидным графитом для отливок — ВЧ (цифры после букв «ВЧ» означают временное сопротивление разрыву в кгс/мм и относительное удлиненние(%);

· чугун легированный со специальными свойствами — Ч.

 

12. Сталь: состав, классификация по способу производства, химическому составу, структуре и назначению.

Сталь (от нем. Stahl)[1] — сплав (твёрдый раствор) железа с углеродом (и другими элементами), характеризующийся эвтектоидным превращением. Содержание углерода в стали не более 2,14%. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость. По химическому составу стали делятся на углеродистые[3] и легированные[4]; в том числе по содержанию углерода — на низкоуглеродистые (до 0,25% С), среднеуглеродистые (0,3—0,55% С) и высокоуглеродистые (0,6—2% С); легированные стали по содержанию легирующих элементов делятся на низколегированные — до 4% легирующих элементов, среднелегированные — до 11% легирующих элементов и высоколегированные — свыше 11% легирующих элементов. Стали делятся на конструкционные и инструментальные. Разновидностью инструментальной является быстрорежущая сталь.

13. Углеродистые стали обыкновенного качества: виды, состав, маркировка и назначение, преимущества и недостатки.

Эти наиболее широко распро­страненные стали поставляют в виде проката в нормализованном состоянии и применяют в ма­шиностроении, строительстве и в других отрас­лях народного хозяйства. Углеродистые стали обыкновенного качества обозначают буквами Ст и цифрами от 0 до 6.

 

14. Углеродистые качественные стали: виды, состав, маркировка и назначение, преимущества и недостатки.

15. Легированные стали: виды, состав, маркировка и назначение, преимущества и недостатки.

Легированная сталь — сталь, которая кроме обычных примесей содержит элементы, специально вводимые в определённых количествах для обеспечения требуемых физических или механических свойств.

16. Медь и алюминий: свойства и применение.

Медь очень хорошо проводит электричество и тепло.

Свойства алюминия малую плотность, высокие теплопроводность и электрическую проводимость, высокую пластичность и хорошую коррозионную стойкость. Медь и ее сплавы находят широкое применение при строительстве линий электропередач и устройстве различного вида связи, в электромашиностроении и приборостроении, в холодильной технике (производство теплообменников охлаждающих устройств) и химическом машиностроении (изготовление вакуум-аппаратов, змеевиков). Свойства алюминия Электропроводность алюминия сравнима с медью, при этом алюминий дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Правда, у алюминия как электротехнического материала есть неприятное свойство - из-за прочной оксидной пленки его тяжело паять.

 

17. Бронза: состав сплава, маркировка и применение.

Бро́нзы — ряд двойных или многокомпонентных сплавов на основе меди, где основным легирующимкомпонентом является олово, бериллий, марганец, алюминий или другой элемент (соответственно бронза называются оловянными, бериллиевыми, марганцевыми, алюминиевыми и т. п.), иногда с добавлением дополнительных компонентов — цинка, свинца, фосфора и пр. Однако бронзой не может быть назван сплавы меди с цинком (это латунь) и никелем (медноникелевые сплавы). Бронзы маркируют буквами Бр, правее ста­вят элементы, входящие в бронзу: О — олово, Ц — цинк, С — свинец, А — алюминий, Ж — железо, Мц — марганец и др. Затем ставят цифры, обозначающие среднее содержание элементов в процентах (цифру, обозначающую содержание меди в бронзе, не ставят). Например, марка БрОЦС5-5-5 означает, что бронза содержит олова, свинца и цинка по 5%, остальное — медь (85%).

18. Латунь: состав сплава, маркировка и применение.

Латунь это сплавы меди и цинком. Латунь — это двойной или многокомпонентный сплав на основе меди, где основным легирующим элементом является цинк, иногда с добавлением олова, никеля, свинца, марганца, железа и других элементов.

19. Сплав алюминия: виды, свойства, применение, особенности.

Алюминиевый сплав — сплав, основной массовой частью которого являетсяалюминий. Самыми распространенными элементами в составе алюминиевых сплавов являются: медь, магний, марганец, кремний и цинк. Все алюминиевые сплавы можно разделить на две основные группы: термически обработанные и термически не обработанные. Большая часть производимых сплавов относится к деформируемым, которые предназначены для последующей ковки и штамповки.[1]

20. Термическая обработка металла: виды, назначение и основные параметры. График термической обработки.

Термическая обработка металлов и сплавов — процесс тепловой обработки металлических изделий, целью которого является изменение структуры и свойств в заданном направлении. Среди основных видов термической обработки следует отметить:

· Отжиг (гомогенизация и нормализация). Целью является получение однородной зёренной микроструктуры и растворение включений. Последующее охлаждение является медленным, препятствующим образованию неравновесных структур типа мартенсита.

· Закалку проводят с повышенной скоростью охлаждения с целью получения неравновесных структур типа мартенсита. Критическая скорость охлаждения, необходимая для закалки зависит от материала.

· Отпуск необходим для снятия внутренних напряжений, внесённых при закалке. Материал становится более пластичнымпри некотором уменьшении прочности.

· Дисперсионное твердение (старение). После проведения отжига проводится нагрев на более низкую температуру с целью выделения частиц упрочняющей фазы. Иногда проводится ступенчатое старение при нескольких температурах с целью выделения нескольких видов упрочняющих частиц.

 

21. Виды отжига. Нормализация стали.

Отжиг. Это процесс термической обработки, состоящий в нагреве стали до определенной температуры, выдержке при ней и последующем медленном охлаждении с целью получения более равновесной структуры. Особенностью отжига является медленное охлаждение. Нормализация. Термическую операцию, при которой сталь нагревают до температуры на 30-50°С выше верхних критических точек Ас3 и Аcm, затем выдерживают при этой температуре и охлаждают на спокойном воздухе, называют нормализацией (см. рис. 40). При нормализации уменьшаются внутренние напряжения, происходит перекристаллизация стали, измельчающая крупнозернистую структуру металла сварных швов, отливок или поковок.
Нормализация стали по сравнению с отжигом является более коротким процессом термической обработки, а, следовательно, и более производительным. Поэтому углеродистые и низколегированные стали подвергают, как правило, не отжигу, а нормализации.

22. Закалка и отпуск стали.

Закалка. Это процесс термической обработки, при которой сталь нагревают до оптимальной температуры, выдерживают при этой температуре и затем быстро охлаждают с целью получения неравновесной структуры. В результате закалки повышается прочность и твердость и понижается пластичность конструкционных и инструментальных сталей и сплавов. Качество закалки зависит от температуры и скорости нагрева, времени выдержки и охлаждения. Основными параметрами закалки являются температура нагрева и скорость охлаждения.
Температуру нагрева для закалки определяют по положению критических точек Ac1 и Ас3. Доэвтектоидные углеродистые стали при закалке нагревают на 30-50°С выше верхней критической точки Ас3, а заэвтектоидные - на 30-50°С выше точки Ас1 (рис. 41). Отпуск - процесс термической обработки, состоящий в нагреве закаленной стали до температуры ниже критической точки Ас1), выдержке при этой температуре и последующем охлаждении (обычно на воздухе). Цель отпуска - получение более устойчивого структурного состояния, устранение или уменьшение напряжений, повышение вязкости и пластичности, а также понижение твердости и уменьшение хрупкости закаленной стали (рис. 43). Правильное выполнение отпуска в значительной степени определяет качество закаленной детали. Температура отпуска варьируется в широких пределах - от 150 до 700°С в зависимости от его цели. Различают низкий, средний и высокий отпуск.

23. Способы обработки металлов давлением и их характеристика.

Оработкой металлов давлениемназывают такой вид обработ­ки, при которой заготовке (в нагретом или холодном состоянии) придают заданную форму, размеры и прочностные свойства под действием внешних сил. Прокатка заключается в пластическом деформировании ме­талла в горячем или холодном состоянии при пропускании его ме­жду вращающимися валками 2. Прессование заключается в выдавливании металла, помещен­ного в замкнутую полость, через отверстие меньшего сечения, чем сечение исходной заготовки. Штамповкой называют процесс деформирования металла в штампах. Различают объемную и листовую штамповку.

24. Коррозия металлов и основные способы защиты от нее.

Коррозия металлов — процесс разрушения металлов и сплавов вследствие химического или электрохимического взаимодействия с внешней средой, при котором металлы окисляются и теряют присущие им свойства. Химическая коррозия — разрушение металлов и сплавов в результате окисления при взаимодействии с сухими газами (02, S02 и др.) при высоких температурах или с органическими жидкостями — нефтепродуктами, спиртом и т. п. Электрохимическая коррозия — разрушение металлов и сплавов в воде и водных растворах.

25. Литейное производство: определение, достоинства и недостатки, этапы технологического процесса. Основные способы литья.

Литьё — технологический процесс изготовления заготовок (реже — готовых деталей), заключающийся в заполнении предварительно изготовленной литейной формы жидким материалом (металлом, сплавом, пластмассой и т. п.) с последующим его затвердеванием.

 

26. Сварка и процессы, родственные сварке.

Сварка — технологический процесс получения неразъёмного соединения посредством установления межатомных и межмолекулярных связей между свариваемыми частями изделия при их нагреве (местном или общем), и/или пластическом деформировании.

27. Качество и контроль сварных соединений.

Сварное соединение — неразъёмное соединение, выполненное сваркой.

28. Размерная обработка металлов: определение, достоинства и недостатки метода, виды рабочих движений.

29. Обработка резанием лезвийным инструментом: виды, особенности и назначение.

30. Абразивная обработка: виды, особенности и назначение.

Существуют следующие виды абразивной обработки:

· шлифование круглое — обработка цилиндрических и конических поверхностей валов и отверстий;

· шлифование плоское — обработка плоскостей и сопряжённых плоских поверхностей;

· шлифование бесцентровое — обработка в крупносерийном производстве наружных и внутренних поверхностей (валы, обоймы подшипников и др);

· шлифование бесцентровое лентой — наружные поверхности, в том числе, сложные профили;

· шлифование лентой сложных профилей — например шлифование лопаток турбин;

 

31. Общие сведения об электротехнических материалах.

Электротехнические материалы – это те материалы, которые предопределены для действия в магнитных и электрических полях. То есть электротехнические материалы являются совокупностью магнитных, проводниковых, полупроводниковых и электроизоляционных материалов. Проводниковым материалом считаются в основном металлы, а также различного вида сплавы из них. Так скажем чистые металлы, то есть металлы без примесей, как правило, обладают малым удельным сопротивлением. Электроизоляционные материалы обладают очень большим электрическим сопротивлением. При помощи электроизоляционных материалов осуществляют изоляцию, их ещё называют диэлектриками.

32. Диэлектрические материалы: свойства, применение, классификация по агрегатному состоянию, происхождению, химическому составу.

33. Физическая природа электропроводности диэлектриков (твердых, жидких и газообразных).

34. Поляризация диэлектриков: диэлектрическая проницаемость и поляризованность.

35. Поляризация диэлектриков: физическая природа, виды и их особенности.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанныхзарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно. В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:

· Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с). Не связана с потерями.

· Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с, без потерь.

· Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.

· Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.

· Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.

· Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.

· Самопроизвольная (спонтанная) — благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости(от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10−2)

· Резонансная — ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.

· Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты. В связи с этим вводится понятие дисперсии диэлектрической проницаемости.

 

36. Диэлектрические потери в твердых, жидких и газообразных диэлектриках.

Диэлектрическими потерями называют энергию, рассеиваемую в единицу времени в диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика.

37. Пробой диэлектриков и электрическая прочность.

ПРОБО́Й ДИЭЛЕ́КТРИКОВ, резкое возрастание электропроводности диэлектрика в электрическом поле, напряженность которого превышает т. н. электрическую прочностьи образование проводящего канала в диэлектрике. Пробой диэлектриков может сопровождаться их разрушением. Минимальное приложенное к диэлектрику напряжение, приводящее к его пробою, называют пробивным напряжением Uпр. Предпробойное состояние диэлектрика характеризуется резким возрастанием тока, отступлением от закона Ома в сторону увеличения проводимости. Значение пробивного напряжения зависит от толщины диэлектрика h и формы электрического поля, обусловленной конфигурацией электродов и самого диэлектрика. Поэтому оно характеризует не столько свойства материала, сколько способность конкретного образца противостоять сильному электрическому полю. Для сравнения свойств различных материалов более удобной характеристикой является электрическая прочность. Электрической прочностью называют минимальную напряженность однородного электрического поля, приводящую к пробою диэлектрика: Eпр = Uпр/ h. Если пробой произошел в газообразном диэлектрике, то благодаря высокой подвижности молекул пробитый участок после снятия напряжения восстанавливает свои электрические свойства. Пробой твердых диэлектриков заканчивается разрушением изоляции. Однако разрушение материала можно предупредить, ограничив нарастание тока при пробое допустимым пределом. Пробой диэлектриков может возникать в результате чисто электрических, тепловых, а в некоторых случаях и электрохимических процессов, обусловленных действием электрического поля. Механизмы пробоя диэлектриков зависят и от агрегатного состояния вещества. Электрическая прочность — характеристика диэлектрика, минимальная напряжённость электрического поля, при которой наступает электрический пробой. Все газы, а также все твёрдые и жидкие диэлектрики обладают конечной электрической прочностью.Когда напряжённость электрического поля превышает электрическую прочность, диэлектрик начинает проводить электрический ток. Проводимость вызывается комбинацией ударной ионизации и туннельного просачивания; роль каждого из этих эффектов зависит от конкретного диэлектрика.Изменение электропроводности происходит скачкообразно и часто приводит к разрушению диэлектрика вследствие перегрева.

 

38. Физическая природа пробоя диэлектриков.

39. Пробой газообразных диэлектриков.

Газообразные диэлектрики широко применяются в электротехнике: высоковольтные выключатели, газонаполненные конденсаторы, распределительные устройства электростанций. В ряде случаях присутствие газообразных диэлектриков становится неизбежным. В линиях электропередачи высокого напряжения, в электроизоляционных узлах трансформаторов воздух является основной изолирующей средой.

40. Пробой жидких диэлектриков.

Жидкие диэлектрики отличаются значительно более высокой электрической прочностью, чем газы в нормальных условиях. Предельно чистые жидкости получить чрезвычайно трудно. Постоянными примесями в жидких диэлектриках являются вода, газы и твердые частички. Наличие примесей и определяет в основном явление пробоя жидких диэлектриков и вызывает большие затруднения для создания общей теории пробоя этих веществ. Представления теории электрического пробоя применяют к жидкостям, максимально очищенным от примесей. При высоких значениях напряженности поля может происходить вырывание электронов из металлических электродов и, как и для газов, разрушение молекул самой жидкости за счет ударов заряженными частицами. При этом повышенная электрическая прочность жидкого диэлектрика по сравнению с газообразным обусловлена значительно меньшей длиной свободного пробега электронов. Пробой жидкостей, содержащих газовые включения, объясняют местным перегревом жидкости (за счет энергии, выделяющейся в относительно легко ионизирующихся пузырьках газа), который приводит к образованию газового канала между электродами. Влияние воды, не смешивающейся с трансформаторным маслом при нормальной температуре и держащейся в нем в виде отдельных мелких капелек, показано на рисунке 5.3. Под влиянием электрического поля капельки воды - сильно полярной жидкости - поляризуются и создают между электродами цепочки с повышенной проводимостью, по которым и происходит электрический пробой. Испытание произведено в стандартном разряднике (h=2,5 мм) Исследование влияния температуры на электрическую прочность трансформаторного масла, чистого и содержащего некоторое количество воды, показывает, что электрическая прочность чистого масла не зависит от температуры в пределах до 80°С, когда начинается кипение легких масляных фракций и образование большого количества пузырьков пара внутри жидкости. Наличие воды снижает электрическую прочность масла при нормальной температуре. Подъем электрической прочности при повышении температуры обусловлен переходом воды из состояния эмульсии в состояние молекулярного раствора. Дальнейшее снижение электрической прочности объясняется процессами кипения жидкости. Увеличение электрической прочности при низких температурах связано с увеличением вязкости масла и меньшими значениями диэлектрической проницаемости льда по сравнению с водой. Твердые загрязнения (сажа, обрывки волокон и т.п.) искажают электрическое поле внутри жидкости и также приводят к снижению электрической прочности диэлектрических жидкостей. Очистка жидких диэлектриков, в частности масел, от примесей заметно повышает электрическую прочность. Так, например, неочищенное трансформаторное масло имеет Епр=4 МВ/м; после тщательной очистки электрическая прочность масла повышается до 20…25 МВ/м.

41. Пробой твердых диэлектриков.

Различают четыре вида пробоя твердых диэлектриков: 1) электрический пробой макроскопически однородных диэлектриков; 2) электрический пробой неоднородных диэлектриков; 3) тепловой (электротепловой) пробой; 4) электрохимический пробой. Каждый из указанных видов пробоя может иметь место для одного и того же материала в зависимости от характера электрического поля (постоянного или переменного, импульсного, низкой или высокой частоты), наличия дефектов, в частности закрытых пор, от условий охлаждения, времени воздействия напряжения.

Диэлектрик, находясь в электрическом поле, теряет свои электроизоляционные свойства, если напряженность поля превысит некоторое критическое значение. Это явление носит название пробоя диэлектрика или нарушения его электрической прочности. Свойство диэлектрика противостоять пробою называется электрической прочностью (Епр). Напряжение, при котором происходит пробой изоляции, называют пробивным напряжением (Uпр) и измеряют чаще всего в киловольтах.

 

42. Механические свойства диэлектриков и их характеристика.

Прочность на разрыв, изгиб; Хрупкость; Твердость; Вязкость. Вязкость – характерна для жидких и полужидких диэлектриков. Вязкость всех веществ резко уменьшается при увеличении. Твердость – способность поверхностного слоя материала противостоять деформации от сжимающего усилия, передаваемого через предметы малых размеров по различным каналам.

Диэлектрик (изолятор) — вещество, практически не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.

Прочность при растяжении, сжатии, изгибе. Значение пределов прочности при растяжении dр при сжатии dс, при изгибе - tи – выражается в Па.

Для электрических материалов анизотропного строения (слоистых) значение механической прочности сильно зависят от направления приложения нагрузки. Для некоторых диэлектриков (стекло, терличные материалы, пластмассы) предел прочности при сжатии или изгибе.

Механическая прочность диэлектрика сильно зависит от площади поперечного сечения S и от температуры. При повышении температуры она уменьшается.

Некоторые материала (термоласты) способны деформироваться при длительном воздействии. Это называется пластическим или холодным течением материала, что не желательно, т.к. изделие должно сохранять свою форму и размер.

 

 

43. Термические свойства диэлектриков и их характеристика.

44. Физико-химические свойства диэлектриков и их характеристика.

При выборе электроизоляционного материала для конкретного применения приходится обращать внимание не только на его электрические свойства в нормальных условиях, но рассматривать также их стабильность при воздействии влажности окружающего воздуха, повышенных температур, мороза и радиоактивных излучений.

Нормальное использование изделия в большей степени зависит от механических свойств материалов: их прочности на растяжение, сжатие, изгиб, удар, твердости или эластичности. В ряде случаев к изделиям, а, следовательно в известной степени и к материалам предъявляются требования вибропрочности при различных амплитудах и частотах колебаний. Для деталей, в которых имеется сопряжение разных материалов, большое значение имеют температурные коэффициенты линейного расширения.

Разработка технологических процессов изготовления электрических машин и аппаратов также требует знания физических и химических свойств. (например, окисляемость, растворимость, склеиваемость) материалов.

 

45. Газообразные диэлектрики: свойства, виды, преимущества и недостатки, особенности применения.

Газообразные диэлектрики делят на две группы: естественные и искусственные.
Естественные газообразные диэлектрики. Наибольшее применение из них в силу своей распространенности получил воздух, даже в тех случаях, когда его присутствие в изоляции нежелательно.
Воздух — смесь газов с электрической прочностью £ПР = 3,2 кВ/мм (при 0,1 МПа и 20°С), плотностью— 1,293 кг/м3. Епр воздуха зависит в основном от расстояния между электродами, давления, температуры и влажности. Приведенная величина соответствует +20°С, давлению 0,1 МПа и расстоянию между электродами 10 мм. Ток утечки через воздух крайне мал, поэтому tgδ его практически равен нулю.
В воздушных линиях электропередачи, сухих трансформаторах, коммутационных аппаратах, распределительных устройствах и т.п. воздух является основной изоляцией. Во многих электрических объектах он играет роль дополнительной изоляции к твердым и жидким диэлектрикам.
Азот по электрическим характеристикам близок к воздуху, однако в отличие от него не содержит кислорода, который оказывает окисляющее воздействие на соприкасающиеся с ним материалы.
Водород — очень легкий газ с высокой теплопроводностью и удельной теплоемкостью, что делает его весьма полезным для использования в качестве охлаждающей среды вместо воздуха. Применение его в электрических машинах снижает потери электрической мощности на трение и вентиляцию, а отсутствие окисляющего фактора замедляет старение органической изоляции.
Гелий — инертный газ, используется в качестве низкотемпературного хладагента, например, для получения сверхпроводимости.
Искусственные газообразные диэлектрики. К ним относятся элегаз, хладоген 12 и др. Из них в ремонтной практике определенный интерес представляет элегаз. Он нетоксичен, химически стоек, не разлагается при нагреве до 800°С, распространен в конденсаторах, кабелях и пр.
В электровакуумных лампах и приборах широко применяются инертные газы и пары ртути, в качестве охлаждающей среды — водород, для получения сверхпроводимости — жидкий гелий.

46. Жидкие диэлектрики: свойства, виды, преимущества и недостатки, особенности применения.

Диэлектрики – вещества, обладающие малой электропроводностью, т.к. у них очень мало свободных заряженных частиц – электронов и ионов. Эти частицы появляются в диэлектриках только при нагреве до высоких температур. Существуют диэлектрики газообразные (газы, воздух), жидкие (масла, жидкие органические вещества) и твердые (парафин, полиэтилен, слюда, керамика и т.п.).

При наложении электрического напряжения в диэлектрике, представляющем сложную электрическую систему, протекают разнообразные электрические процессы, связанные с его поляризацией, электрической проводимостью. В случае очень большого напряжения может произойти разрушение диэлектрика, называемое пробоем. Эти процессы определяют свойства диэлектриков, а, следовательно, надежность их работы в радиоустройствах, поэтому рассмотрим эти процессы.

Нефтяные электроизоляционные масла, Синтетические жидкие диэлектрики, Природные смолы…

Важным преимуществом жидких диэлектриков является их способность к восстановлению своих свойств после искрового пробоя и способность проводить тепло...

Недостатки – ограниченный интервал рабочих температур, Недостатки — токсичность некоторых видов фторорганических жидкостей, высокая стоимость.

Жидкие диэлектрики применяются в электроизоляционной технике в качестве пропитывающих и заливочных составов при производстве электро и радиотехнической аппаратуры: в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры.

 

47. Общие сведения и классификация полупроводников.

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводникамии диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.[1]

По характеру проводимости: Собственная проводимость; Примесная проводимость. По виду проводимости: Электронные полупроводники; Дырочные полупроводники;

48. Электропроводность полупроводников и ее зависимость от различных факторов.

49. Фотопроводимость полупроводников.

Фотопроводимость полупроводниковувеличение электропроводности полупроводников под действием электромагнитного излучения — может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника, т. е. когда энергия фотонов равна или больше ширины запрещенной зоны (hn ³ DE), могут совершаться перебросы электронов из валентной зоны в зону проводимости (рис. 324, а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок (в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная как электронами, так и дырками. Если полупроводник содержит примеси, то фотопроводимость может возникать и при hn < DE: для полупроводников с донорной примесью фотон должен обладать энергией hn ³ DЕD, а для полупроводников с акцепторной примесью — hn ³ DЕA. При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n-типа (рис. 324, б) или из валентной зоны на акцепторные уровни в случае полупроводника p-типа (рис. 324, в). В результате возникаетпримесная фотопроводимость, являющаяся чисто электронной для полупроводников п-типа и чисто дырочной для полупроводников p-типа. Учитывая значения DE и DEп для конкретных полупроводников, можно показать, что красная граница фотопроводимости для собственных полупроводников приходится на видимую область спектра, для примесных же полупроводников — на инфракрасную. На рис. 325 представлена типичная зависимость фотопроводимости j и коэффициен­та поглощения { от длины волны l падающего на полупроводник света. Из рисунка следует, что при l>l0 фотопроводимость действительно не возбуждается. Спад фото­проводимости в коротковолновой части полосы поглощения объясняется большой скоростью рекомбинации в условиях сильного поглощения в тонком поверхностном слое толщиной х»1 мкм (коэффициент поглощения»106 м–1). Наряду с поглощением, приводящим к появлению фотопроводимости, может иметь место экситонный механизм поглощения. Экситоны представляют собой квази­частицы — электрически нейтральные связанные состояния электрона и дырки, образующиеся в случае возбуждения с энергией, меньшей ширины запрещенной зоны. Уровни энергии экситонов располагаются у дна зоны проводимости. Так как экситоны элект­рически нейтральны, то их возникновение в полупроводнике не приводит к появлению дополнительных носителей тока, вследствие чего экситонное поглощение света не сопровождается увеличением фотопроводимости.

 

50. Термоэлектрические явления в полупроводниках.

51. Гальваномагнитные эффекты в полупроводниках.

Гальваномагнитные эффекты — совокупность эффектов, связанных с воздействием магнитного поля на электрические свойства проводников (металлов и полупроводников), по которым течёт ток. Наиболее существенны гальваномагнитные эффекты в магнитном поле, которое направленно перпендикулярно току.

 

52. Характерные свойства проводников и их зависимость от внешних условий.

53. Проводниковые материалы с высокой проводимостью: свойства, виды, особенности применения

Свойство металлов объясняется хорошей проводимостью электрического тока, а это значит металл обладает большой плотностью свободных электронов. Малое удельное сопротивление имеют химически чистые металлы. Как правило, сплавы по сравнению с чистыми металлами обладают большим удельным сопротивлением. Известно, что с повышением температуры сопротивление металлов увеличивается. Производя расчеты с целью выбора проводниковых материалов это необходимо учитывать, так как они нагреваются во время прохождения по ним электрического тока.

виде шин, рельсов трамваев, электрических железных дорог (включая «третий рельс» метро) и пр.

 

54. Материалы с большим удельным сопротивлением: свойства, виды, особенности применения.

Сплавы на основе железа, никеля, хрома и алюминия в основном применяются для электронагревательных элементов. Они относятся к жаростойким с высоким удельным сопротивлением и подразделяются на: никель-хромовые (нихромы); никель-хромовые, легированные алюминием, железохромоникелевые и железохромоалюминиевые (хромали). У всех этих сплавов характеристики зависят от их химического состава.

применения переменного электрического тока - изобретения телефона.

применения этих групп материалов для изоляции и в конструкционных изделиях

 

55. Магнитные материалы: свойства и классификация веществ, применение.

Применяемые в электронной технике магнитные материалы подразделяют на две основные группы: магнитотвердые и магнитомягкие. В отдельную группу выделяют материалы специального назначения.

К магнитотвердым относят материалы с большой коэрцитивной силой НC. Они перемагничиваются лишь в очень сильных магнитных полях и служат для изготовления постоянных магнитов.

применение в технике (электротехнике, вычислительной технике, электронике...

применения его магнитные свойства в природном виде.

 

56. Процессы технического намагничивания и перемагничивания магнитных материалов.

Магнитные свойства материалов характеризуется петлей гистерезиса, кривой намагничивания, магнитной проницаемостью, потерями энергии при перемагничивании.

К магнитным материалам с точки зрения техники относят вещества, обладающие определенными магнитными свойствами и используемые в современной технологии. Магнитными материалами могут быть различные сплавы, химические соединения, жидкости.

В основном магнитные материалы относятся к группе ферромагнетиков и делятся на две большие группы — Магнитотвёрдые материалы и Магнитомягкие материалы. В то же время в связи с успехом в науках изучающих магнетизм и с развитием большой исследовательской работы в области изучения магнитных материалов, появились новые большие группы магнитных материалов: магнитострикционные материалы, магнитооптические материалы, термомагнитные материалы.

 

57. Магнитомягкие материалы: свойства, виды и особенности применения.

58. Магнитотвердые материалы: свойства, виды и особенности применения.

59. Активные диэлектрики: виды, особенности свойств, применение.

60. Простые полупроводники и бинарные соединения.

 

Преподаватель Исакова Е.П.

– Конец работы –

Эта тема принадлежит разделу:

Перечень вопросов для проведения промежуточной аттестации По дисциплине ОП.05 Материаловедение

Председатель цикловой Зам директора по УПР... методической комиссии Павлова Е В... Бобылева Г А г...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: В форме экзамена

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Эта работа не имеет других тем.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги