рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Электрические свойства

Электрические свойства - раздел Образование, Виды связи   К Электрическим Свойствам Диэлектриков Относят Поляризацию, Э...

 

К электрическим свойствам диэлектриков относят поляризацию, электропроводность, диэлектрические потери и пробой.

Поляризация диэлектриков. Диэлектрик, помещенный между электродами, к которым подводится электрическое напряжение, поляризуется.

Поляризация - это процесс, состоящий в ограниченном смеще­нии или ориентации связанных зарядов в диэлектрике при воздей­ствии на него электрического поля.

В любом веществе, в том чис­ле и в диэлектрике, независимо от наличия или отсутствия в нем свободных электрических заря­дов всегда имеются связанные заряды: электроны оболочек атомов, атомные ядра, ионы. Под действием внешнего элект­рического поля связанные элек­трические заряды в диэлектри­ке смещаются со своих равно­весных положений: положитель­ные к отрица­тельному электроду, а отрица­тельные - в обратном (рис. 5.1).

У диэлектриков, содержащих дипольные молекулы, при поляризации наблю­дается ориентация диполей в электрическом поле. Поляри­зация приводит к образованию в каждом элементарном объеме ди­электрика dV индуцированного (наведенного) электрического мо­мента dp.

(35)

 

Степень поляризованности диэлектрика оценивается относитель­ной диэлектрической проницаемостью .Чем выше ее значение, тем сильнее поляризуется диэлектрик.

Относительная диэлектрическая проницаемость представляет собой отношение заряда конденсатора с данным диэлектриком к заряду 0 вакуумного конденсатора тех же размеров, той же кон­фигурации электродов, при том же напряжении:

(36)

где - заряд конденсатора, когда между обкладками находится ди­электрик; 0 - заряд конденсатора, в котором диэлектриком является вакуум; - заряд, обусловленный поляризацией.

 

Рис. 5.1.Схема расположения зарядов в поляризованном диэлектрике: 1- диэлектрик; 2- обкладки электродов; S – площадь каждой обкладки; h- расстояние между электродами (толщина слоя диэлектрика).

 

Таким образом

(37)

Диэлектрическая проницаемость является количественной харак­теристикой, она всегда больше единицы.

Когда между обкладками конденсатора находится вакуум,

и (38)

где - диэлектрическая проницаемость вакуума.

Емкость конденсатора, в котором диэлектриком является ваку­ум, С0 определяется по следующей формуле:

(39)

 

Емкость конденсатора тех же размеров с диэлектриком

(40)

где h - толщина диэлектрика, м.

Отсюда относительная диэлектрическая проницаемость:

(41)

Увеличение диэлектрической проницаемости свидетельствует о том, что емкость конденсатора с данным диэлектриком увеличива­ется по сравнению с емкостью конденсатора, между обкладками которого находится вакуум.

В зависимости от строения диэлектрика и его агрегатного со­стояния различают электронную, ионную, дипольную, миграцион­ную, спонтанную и резонансную поляризацию.

Электронная поляризация - это смещение электронных ор­бит относительно положительно заряженного ядра под действием внешнего электрического поля. Она устанавливается за очень ко­роткое время после наложения электрического поля и составляет с. При увеличении размеров атома электронная поля­ризуемость увеличивается.

Электронная поляризация происходит во всех атомах любого ве­щества и, следовательно, во всех диэлектриках независимо от нали­чия в них других видов поляризации. Для веществ ионного строения существенна электронная поляризуемость не атомов, а ионов.

Запаздывание в установлении статического равновесия переме­щающихся зарядов по отношению к электрическому полю называ­ется релаксационной поляризацией.

Электронно-релаксационная поляризация проявляется в матери­алах, имеющих дефекты в электронном строении.

Ионная поляризация - это смещение друг относительно друга из положения равновесия разноименно заряженных ионов на рассто­яние, меньшее постоянной кристаллической решетки, в веществах с ионными связями. Она устанавливается также за малое, но все же большее, чем при электронной поляризации, время с.

Ионная поляризация, как и электронная, не связана с потерями энергии и не зависит от частоты.

Ионно-релаксационная поляризация присуща ионным диэлект­рикам со сравнительно слабым закреплением структурных частиц (например, изоляторный фарфор, нагревостойкая керамика, щелоч­ные изоляционные стекла). Она сопровождается рассеиванием элек­трической энергии и зависит от температуры и частоты тока.

Дипольная поляризация заключается в повороте (ориентации) дипольных молекул в направлении внешнего электрического поля.

Поляризованность при дипольной поляризации уменьшается после снятия приложенного напряжения, т.е. имеет место дипольно-релаксационная поляризованность.

Миграционная поляризация обусловлена наличием в тех­нических диэлектриках проводящих и полупроводящих включений и слоев с различной проводимостью.

При внесении неоднородных материалов в электрическое поле свободные электроны и ионы начинают перемещаться (мигриро­вать) в пределах каждого включения и накапливаться на границах, образуя поляризованные области.

Спонтанная (самопроизвольная) поляризация на­блюдается у диэлектриков с доменным строением, когда до прило­жения внешнего электрического поля в таких материалах уже име­ются небольшие поляризованные области.

Внешнее поле ориентирует домены, векторы электрических мо­ментов которых ориентированы хаотично и скомпенсированы в объеме материала, и диэлектрик поляризуется.

При самопроизвольной поляризации наблюдаются большие ди­электрические потери и резко выраженная зависимость диэлектри­ческой проницаемости от температуры и напряженности электри­ческого поля. Диэлектрическая проницаемость при этом может до­стигать очень высоких значений (до 100 000).

Материалы, обладающие таким видом поляризации, называют­ся сегнетодиэлектриками (сегнетовая соль, титанат бария BaTiO2 , титанат стронция SrTiO3 и др.).

Резонансная поляризация проявляется в области сверхвы­соких частот у газов и твердых диэлектриков с дефектами в крис­таллической структуре.

В зависимости от механизма поляризации все диэлектрики мож­но разделить на полярные и неполярные.

Полярные диэлектрики составляют группу материалов, со­держащих постоянные электрические диполи, которые способны к переориентации во внешнем электрическом поле.

В полярных диэлектриках наблюдается электронная и дипольно-релаксационная поляризация. Они имеют худшие электрические свойства по сравнению с неполярными диэлектриками и применяются в качестве электроизоляционных материалов в области низких частот.

Полярными являются поливинилхлорид, эпоксидные смолы, фторопласт – 3, органическое стекло и др.

Неполярные диэлектрики составляют группу материалов, не содержащих диэлектрические диполи, которые способны к пере­ориентации во внешнем электрическом поле.

В неполярных диэлектриках наблюдается в основном электрон­ная поляризация. Они применяются как высококачественные элек­троизоляционные материалы в технике высоких и сверхвысоких частот.

Неполярными являются воздух, полистирол, полиэтилен, фторопласт-4, бензол и др.

Электропроводность диэлектриков. Диэлектрические материалы обладают некоторой электропроводностью, которая связана с на­правленным перемещением заряженных частиц (электронов, ионов, молионов).

Электропроводность диэлектриков в большинстве случаев но­сит ионный характер, т.е. носителями зарядов являются ионы.

Электропроводность диэлектриков оценивается удельным элек­трическим сопротивлением постоянному току, Ом*м,

, (42)

где у- удельная электрическая проводимость, См/м.

При включении диэлектрика в цепь постоянного напряжения происходит резкий скачок тока, а затем уменьшение его до посто­янного значения. Это постоянное значение называется током сквоз­ной проводимости Iск.

Спадающий во времени ток, обусловленный перераспределением свободных зарядов, принято называть абсорбционным Iаб.

Ток, сопутствующий электронной и ионной поляризации, назы­вают током смещения; его мгновенное значение обозначают Iсм.

Таким образом, ток, проходящий через диэлектрик, представля­ет собой сумму токов смещения Iсм, абсорбции Iаб и сквозного Iск .

I = Iсм + Iаб + Iск (43)

Так как абсорбционный ток быстро затухает, электропровод­ность изолирующих материалов при постоянном напряжении оп­ределяется по сквозному току:

(44)

где Iск = I – Iсм – Iаб - ток сквозной проводимости; I- общий ток, A;

U- приложенное напряжение, В.

При определении электропроводности диэлектрика необходи­мо измерять ток, когда Iсм + Iаб = 0

В зависимости от конструкции электротехнических изделий при­нято различать удельное объемное электрическое сопротивлениеи удельное поверхностное электрическое сопротивление.

Удельное объемное электрическое сопротив­ление рv определяет свойства изоляции, когда основные утечки тока происходят через объем материала, например в экранирован­ном электрическом проводе.

Удельное объемное электрическое сопротивление рv, численно равно сопротивлению образца материалов в виде кубика с ребром единичных размеров, когда напряжение прикладывается к двум его противоположным граням. Для плоских образцов:

, (Ом*м) (45)

 

где RV - объемное сопротивление образца постоянному току. Ом; S- площадь элект­родов, контактирующих с испытуемым образцом, м2; b - толщина образцов, м.

Удельное поверхностное электрическое сопро­тивление рs является важнейшей характеристикой при оценке изо­ляционных материалов в таких деталях, как линейные изоляторы.

Удельное поверхностное сопротивление рs численно равно со­противлению образца материала в виде квадрата со стороной еди­ничных размеров при прохождении тока через две его противопо­ложные стороны:

, (Ом*м ) (46)

где R - поверхностное сопротивление материала образца, находящегося между электродами, Ом; / - длина электродов; h - расстояние между электродами, м.

Удельное объемное и поверхностное электрические сопротивле­ния р твердых диэлектриков зависят от температуры, влажности и величины приложенного напряжения.

Электропроводность многих изоляционных материалов зависит не только от строения и химического состава, но и от технологии их изготовления.

Поверхностная электропроводность твердых диэлектриков оп­ределяется наличием в их строении адсорбированных водно-кол­лоидных пленок. По отношению к воде изоляционные материалы делятся на не смачиваемые и смачиваемые. К не смачиваемым материалам относятся, например, воски, янтарь, полистирол и др. Их поверхностная проводимость мала и не зависит от влажности воз­духа. К смачиваемым материалам относятся электроизоляцион­ные стекла, мрамор, бумага, многие виды пластмасс. Электропро­водность у них зависит от влажности окружающей среды.

Диэлектрические потери. Диэлектрические потери связаны со сложными явлениями, которые происходят в материале при воз­действии на него электрического поля. Они проявляются на посто­янном и переменном токе. Однако качество диэлектрика на посто­янном токе обычно характеризуется не диэлектрическими потеря­ми, а удельным объемным и поверхностным сопротивлениями.

При воздействии электрического поля на любое вещество часть потребляемой им электрической энергии превращается в тепловую и рассеивается.

Рассеянную часть поглощенной диэлектриком электрической энергии называют диэлектрическими потерями.

 

Рис. 5.2. Векторная диаграмма плотности тока в диэлектрике:

- угол сдвига суммарного тока относительно тока идеального диэлектрика; у - угол сдвига фаз между током и напряжением;

Jсм - плотность тока смещения;

Jпр - плотность тока проводи­мости; J - плотность общего тока

 

В диэлектрике, помещенном в пе­ременное электрическое поле с напря­женностью Е и угловой частотой , возникают ток смещения и ток прово­димости (рис. 5.2). Угол между век­торами плотности переменного тока диэлектрика J и тока смещения J на комплексной плоскости называют уг­лом диэлектрических потерь. Тангенс этого угла является одним из важней­ших параметров не только диэлектри­ков, но также конденсаторов, изоля­торов и других электроизоляционных материалов. Тангенс угла диэлектри­ческих потерь определяет активную мощность, которая теряется в диэлек­трике, работающем под переменным напряжением. Он выражается отноше­нием плотности тока проводимости J пр к плотности тока смещения J см:

, (47)

Введение безразмерного параметра удобно потому, что он не зависит от формы и размеров участка изоляции, а определяется лишь свойствами диэлектрического материала.

Чем выше тангенс угла диэлектрических потерь ,тем больше нагрев диэлектрика в электрическом поле заданной частоты и на­пряжения.

Пробой. Явление образования в диэлектрике проводящего кана­ла под действием электрического' поля называют пробоем.

Если проводящий канал проходит от одного электрода к друго­му и замыкает их, происходит полный пробой.

Если проводящий канал не достигает хотя бы одного из элект­родов, происходит неполный пробой.

При частичном пробое пробивается лишь газовое или жидкое включение твердого диэлектрика.

У твердых диэлектриков кроме пробоя по объему возможен про­бой по поверхности, такой пробой называют поверхностным.

Минимальное напряжение, приводящее к пробою диэлектрика, называют пробивным напряжением Uпр . Пробивное напряжение Uпр растет с увеличением толщины диэлектрика h. Для характеристики способности материала противостоять разрушению в электричес­ком поле используют напряженность электрического поля, при ко­торой происходит пробой, мВ/м,

, (48)

где Uпр – величина положительного к диэлектрику напряжения, при котором произошел пробой, кВ; h- толщина материала в месте пробоя, м.

Напряженность однородного электрического поля, приводящую к пробою, называют электрической прочностью.

Механизмы пробоя газообразных, жидких и твердых диэлектриков имеют существенные различия.

Контрольные вопросы:

1. На какие группы можно разделить диэлектрики по назначению, по агрегатному состоянию, по химической основе?

2. Что из себя представляет поляризация диэлектрика?

3. Чем оценивается степень поляризованности диэлектрика?

4. Как определить относительную диэлектрическую проницаемость через заряд и емкость конденсатора?

5. Перечислить виды поляризации. В чем их суть?

6. Как определяется объемная и поверхностная проводимость диэлектрика?

7. Что такое диэлектрические потери?

8. Что такое ток абсорбции, ток смещения, сквозной ток диэлектрика?

9. Чему равен тангенс угла диэлектрических потерь?

10. Что такое диэлектрическая прочность?

 

– Конец работы –

Эта тема принадлежит разделу:

Виды связи

ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИЕ ВЕЩЕСТВА... Электро и радиоматериалы обладают большим разнообразием свойств Эти свойства... Виды связи Из атомов сроятся молекулы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Электрические свойства

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Виды связи
Все вещества состоят из атомов. Электроны притягиваются к ядру и отталкиваются друг от друга. Внешние электроны могут отрываться от одного атома и присоединяться к другому атому, изменяя число его

Кристаллические вещества
К кристаллическим веществам относят все металлы и металлические сплавы. Кристалл состоит из множества сопряженных друг с другом элементарных кристаллических ячеек. В элементарной кристалли

Аморфные и аморфно-кристаллические вещества
  Аморфные вещества. В аморфных веществах атомы и молекулы расположены беспорядочно. В отличие от кристаллических аморфные вещества не имеют строго определенной температуры пере­хода

Материалы с высокой проводимостью
  К материалам этого типа предъявляются следующие требования: минимальное значение удельного электрического сопротивления; достаточно высокие механические свойства (главным образом пр

Медь и ее сплавы
  Медь.Медь является одним из самых распространенных материалов высокой проводимости. Она обладает следующими свойствами: - малым удельным электрическим сопр

Алюминий и его сплавы
  Алюминий.Алюминий относится к так называемым легким металлам (плотность литого алюминия около 2600, прокатанного - 2700 кг/м3). Алюминий

Железо и его сплавы
  Железо обладает следующими свойствами: - более высокое по сравнению с медью и алюминием удельное элек­трическое сопротивление (ρ примерно 0,1 мкОм×м), что ограни

Проводниковые резистивные материалы
  Проводниковые резистивные материалы разделяют на сплавы для проволочных резисторов (манганин, константан) и для элект­ронагревательных элементов (нихром, фехраль, хромаль).

Пленочные резистивные материалы
  Пленочные резистивные материалы получают из исходных ма­териалов в процессе получения самих резистивных пленок. Свой­ства таких резистивных пленок значительно отличаются от свойств

Материалы для термопар
  Для термопар применяют чистые металлы и различные сплавы с высоким электрическим сопротивлением. Материалы для термопар выбирают по следующим характерис­тикам: доп

Благородные металлы
Группу благородных металлов (серебро, платина, палладий, зо­лото) составляют металлы, обладающие наибольшей химической стойкостью к условиям окружающей среды и действию агрессив­ных сред (кислот, щ

Тугоплавкие металлы
К тугоплавким относят металлы с температурой плавления бо­лее 1700°С. Эти металлы, как правило, химически устойчивы при низких температурах, но при повышенных температурах активно взаимодействуют с

Сверхпроводники
  При понижении температуры удельное электрическое сопротив­ление металлов уменьшается и при весьма низких (криогенных) тем­пературах электрическое сопротивление металлов приближается

Криопроводники
Некоторые металлы могут достигать при низких (криогенных) температурах весьма малого значения удельного электрического сопротивления ρ, которое в сотни и тысячи раз меньше, чем удель­ное элект

Материалы для электроугольных изделий
К электроугольным изделиям относятся щетки электрических машин, электроды для прожекторов и электролитических ванн, аноды гальванических элементов, микрофоны, содержащие угольный порошок, уголь­ные

Проводящие и резистивные композиционные материалы
Проводящие композиционные материалы представляют собой механические смеси мелкодисперсных порошков металлов и их со­единений с органической или неорганической связкой. Композиционные матер

Материалы для подвижных контактов
Все контактные материалы при работе подвергаются износу (раз­рушению). Принято различать механический, химический и элект­рический износы. Механический износ связан с истиранием и деформир

Материалы для скользящих контактов
Скользящие контакты обеспечивают переход электрического тока от неподвижной части устройства к подвижной. При работе скользящих контактов их поверхности подвергаются механическому износу и

Материалы для размыкающих контактов
Материалы для размыкающих контактов работают в сложных условиях, поскольку в процессе работы между контактными поверхностями размыкающих контактов могут возникать электрические разряды в виде искры

Металлокерамика
Металлокерамические или порошковые сплавы получают из металлических порошков методом их прессования и последующего спекания при температуре ниже температуры плавления исходных материа

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ
Полупроводниковые материалы обладают проводимостью, кото­рой можно управлять, изменяя напряжение, температуру, освещенность и другие факторы. По способности проводить электрический ток по­лупроводн

Свойства полупроводников
Свойства полупроводниковых материалов характеризуются сле­дующими показателями: собственная и примесная проводимости полупроводников, электропроводность полупроводников, оптичес­кие и фотооптически

Простые полупроводники
Простыми называют такие полупроводники, основной состав которых образован атомами одного химического элемента. Большинство полупроводниковых материалов представляют со­бой кристаллические

Полупроводниковые соединения
Простые полупроводники не всегда отвечают требованиям совре­менного производства полупроводниковых приборов. Для создания материалов с различными свойствами широко используют сложные неорганические

ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ
  По назначению диэлектрические материалы можно разде­лить на электроизоляционные материалы и активные диэлектрики. По агрегатному состоянию диэлектрические материа­лы подраз

Механические свойства диэлектрика.
  К основным механическим свойствам диэлектрика относятся упругость, прочность и вязкость. Упругость при небольших механических напряжениях выполняется закон Гука, который устанавлива

Тепловые свойства
К основным тепловым свойствам диэлектрика относят нагрево-стойкость, теплопроводность, тепловое расширение и холодостой­кость (морозостойкость). Нагревостойкость - это способность д

Влажностные свойства
  Все изолирующие материалы поглощают влагу. Размер молеку­лы воды примерно 2,1 * 10-9 м, что позволяет ей проникать даже в поры таких диэлектриков, как стекло. Наличие пор,

Физико-химические свойства
  К основным физико-химическим свойствам относят кислотное число, растворимость, химостойкость, светостойкость и радиаци­онную стойкость. Кислотное число определяется количес

Полимеризационные синтетические полимеры
Получают в процессе полимеризации под действием теплоты, давления, ультрафиолетовых лучей, а также инициаторов и катализаторов. При полимеризации двойные и тройные связи мономеров разрываются и мол

Полимерные углеводороды.
К ним относят полистирол, полипропилен, полиэтилен, поливинилхлорид (ПВХ), винипласти др. Полистирол - твердый прозрачный материал, неполярный диэлектрик с высокими электроизоляционными св

Фторорганические полимеры.
Одним из существенных недостатков органических синтетических полимеров является пониженная теплостойкость. Для большинства органических полимеров допустимые рабочие температуры от -60 до + 120°С. У

Фенолформальдегидные смолы
Фенолформальдегидные смолы получают путем поликонденсации фенола в водном растворе формальдегида при температуре 70...90°С в присутствии катализатора (кислоты или щелочи). Они могут быть термореакт

Полиэфирные смолы
  Полиэфирные смолы получают в результате реакции поликонденсации различных многоатомных спиртов (гликоля, глицерина и др.) и многоосновных органических кислот (фталевой, малеиновой и

Эпоксидные смолы
В чистом виде эпоксидные смолы представляют собой термопластичные низкоплавкие жидкие материалы. После добавления отвердителей эпоксидные смолы быстро отвердевают, приобретая пространствен

Полиамиды
Полиамиды - термопластичные полярные диэлектрики с линейной структурой. Среди полиамидов наиболее распространены капрон и найлон. Капрон имеет температуру размягчения 215…2

Полиимиды
Полиимиды органические полимеры, которые обладают высокой нагревостойкостью (длительно выдерживают температуру до 300°С, а кратковременно до температуры 500°С); очень высокой холодостойкостью (сохр

Электроизоляционные пластмассы
Пластические массы (пластмассы) объединяют группу твердых или упругих материалов, которые состоят полностью или частично из полимерных соединений и формуются в изделия методами, основанными на испо

Слоистые пластики и фольгированные материалы
  Слоистые пластики являются одной из разновидностей пластмасс, которые получают горячим прессованием листовых волокнистых материалов, предварительно пропитанных синтетическими смолам

Электроизоляционные материалы на основе каучуков.
Полимеры, которые при нормальной температуре подвержены большим обратным деформациям растяжения (до многих сотен процентов), называются эластомерами. Эластомерами являются все каучуки и резины. На

Компаунды.
Компаунды представляют собой механические смеси из электроизоляционных материалов, не содержащих растворителей. По сравнению с лаками компаунды обеспечивают лучшую влагостойкость и влагоне

ТВЕРДЫЕ НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ.
К твердым неорганическим диэлектрикам относят стекла; стеклокристаллические материалы, получаемые с использованием специальной термообработки стекла; оксидные электроизоляционные пленки; керамику;

Ситаллы.
Ситаллы («ситалл» - сокращение от слов «силикат» и «кристалл») – продукт частичной кристаллизации стекломассы, в которую кроме обычных оксидов вводят тонкодисперсные примеси, служащие для образован

Керамика.
Керамика – твердый плотный материал, который получают спеканием неорганических солей с минералами и оксидами металлов. В качестве исходных материалов используют непластичные кристалообразу

Жидкие диэлектрики
Жидкие диэлектрики представляют собой низкомолекулярные вещества органического происхождения, которые бывают полярными и не полярными. Их электрофизические свойства в значительной степени зависит о

Газообразные диэлектрики
Они должны быть химически инертны, не образовывать активных веществ, разрушающих твердые мат

Пробой газов в однородном электрическом поле
Однородное поле образуется между электродами одинаковой геометрической фор­мы с большой площадью поверхности (например, плоскость-плос­кость, шар-шар), когда их диаметр D в 10 раз больше расстояния

Пробой газа в неоднородном поле
Неоднородное поле образует­ся между электродами, если хотя бы один из которых имеет малую площадь. В основном неоднородные электрические поля существу­ют в газоразрядных приборах, между контактами

Относительная плотность воздуха 1.
В ряде случаев воздух является основным изолирующим материа­лом, например в воздушных конденсаторах, на участках воздушных линий электропередачи воздух образует единственную изоляцию между голыми п

Сигнетодиэлектрики
Сигнетодиэлектриками называются материалы, которые обла­дают спонтанной (самопроизвольной) поляризацией в определен­ном интервале температур. Спонтанная поляризация - это поляризаци

Пьезодиэлектрики
Пьезоэлектриками называют твердые, анизотропные кристалли­ческие вещества, обладающие пьезоэффектом. Пьезоэффект был открыт братьями Кюри в 1880 г. Явление образования электрическ

Электреты
  Электретами называются диэлектрики, которые длительное вре­мя создают в окружающем пространстве электрическое поле за счет предварительной электризации или поляризации.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МАГНИТНЫХ МАТЕРИАЛОВ
Магнитные свойства материалов характеризуются петлей гис­терезиса, кривой намагничивания, магнитной проницаемостью, потерями энергии при перемагничивании.  

Магнитотвердые материалы
К магнитотвердым материалам относится магнитные материа­лы с широкой гистерезисной петлей и большой коэрцитивной си­лой Нс (рис. 6.3, г). Основными характеристиками магни

Магнитомягкие материалы
Основным видом потерь в магнитомягких материалах являются на вихревые токи, которые для листового образца про­порциональны квадрату частоты перемагничивания. Это явление связано с магнитным поверхн

Магнитомягкие материалы для низкочастотных магнитных полей
  В постоянных и низкочастотных магнитных полях (на частотах до единиц килогерц) применяют металлические магнитомягкие ма­териалы: технически чистое, электролитическое и карбонильное

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги