рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Пределы функций, основные теоремы о пределах

Пределы функций, основные теоремы о пределах - Контрольная Работа, раздел Образование, Методические указания и задания контрольных работ 1. Теоремы О Пределах. Пусть Существуют К...

1. Теоремы о пределах.

Пусть существуют конечные пределы и . Тогда справедливы следующие утверждения:

 

  • ;

 

  • ;

 

  • , где с – число;

 

  • , если .

 

2. Бесконечно малые и бесконечно большие функции.

Бесконечно малой функцией при называется функция , предел которой равен нулю при : .

Если значения функции f(x) неограниченно возрастают по абсолютной величине при , то такую функцию называют бесконечно большой при . Предел этой функции обозначают знаком бесконечности : .

 

Теорема о связи бесконечно малых и бесконечно больших функций.

Если , то .

Если , то

 

Задача. Вычислить пределы функции при

Решение.В задаче следует найти предел частного. С этой целью необходимо вычислить пределы числителя и знаменателя дроби, подставив в них предельное значение аргумента.

а) .

Здесь применима теорема о пределе частного.

 

б) .

 

При подстановке в числитель и знаменатель дроби убеждаемся, что их значения равны нулю, поэтому теорема о пределе частного здесь не применима. В данном случае говорят, что имеется неопределенность вида .

Неопределенность вида при может быть раскрыта сокращением дроби на множитель вида (х–х0), который обращает числитель и знаменатель дроби в нуль, в данном случае на (х+4). Поэтому, следует разложить на множители числитель и знаменатель дроби (п.2 и п.3 прил.1).

 

3х2+10х – 8 = 0; 4х2+15х– 4 = 0;
D = D =
3х2+10х–8 = 3(х+4)(х–2/3) = 4х2+15х – 4 = 4(х+4)(х–1/4 ) =
= (х+4)(3х–2). = (х+4)(4х–1).

 

Таким образом,

в)

Здесь применима теорема о пределе частного, так как существуют конечные пределы числителя и знаменателя, и предел знаменателя не равен нулю.

г)

Здесь использована теорема о связи бесконечно малой и бесконечно большой функций.

 

д) .

 

Пределы числителя и знаменателя дроби равны . В этом случае говорят, что имеется неопределенность вида «бесконечность на бесконечность». Теорема о пределе частного здесь не применима.

 

Чтобы раскрыть неопределенность вида при , каждый член числителя и знаменателя дроби делят на x в наивысшей степени (в нашем примере на х2), отчего величина дроби не изменится, но исчезнет неопределенность.

 

так как

(по теореме о связи бесконечно большой и бесконечно малой функций).

 

 

Замечание. Полезно запомнить, что при предел отношения многочленов c одинаковыми наивысшими степенями равен отношению коэффициентов при этих степенях.

В нашем примере, коэффициенты при наивысшей степени х2 многочленов равны 3 и 4, поэтому и предел дроби равен .

Ответы.

 

– Конец работы –

Эта тема принадлежит разделу:

Методические указания и задания контрольных работ

МАТЕМАТИКА... Методические указания и задания контрольных работ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Пределы функций, основные теоремы о пределах

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОСНОВНЫЕ ВОПРОСЫ К ЭКЗАМЕНУ ЗА ПЕРВЫЙ КУРС
  Тема 1. ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 1. Определители второго и третьего порядков и их свойства. Миноры и алгебраические дополнения. Разложение определителя по

Тема 3. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ
15. Задачи, приводящие к понятию производной. Определение производной; ее геометрический и механический смысл. 16. Правила дифференцирования функций. Производные основных элементарных функ

Тема 4. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ
29. Неопределенный интеграл; его свойства. Таблица основных интегралов. 30. Интегрирование заменой переменной; по частям. Интегрирование рациональных дробей. 31. Задачи, приводящи

ПРАВИЛА ОФОРМЛЕНИЯ КОНТРОЛЬНЫХ РАБОТ
При выполнении контрольных работ по математике нужно придерживаться следующих правил: 1. Каждую контрольную работу выполнять в отдельной тетради чернилами любого цвета, кроме красного и зе

Задачи 1–20
  Даны вершины треугольника: А(х1; у1), В(х2; у2), С(х3, у3). Сделать чертеж и найти: 1) дли

Задачи 21–30
Решить систему линейных уравнений методом Крамера. 21. 22.

Задачи 31–40
Вычислить пределы функции y=f(x), при указанном поведении аргумента x.   31.

Задачи 41–50
Вычислить пределы, используя замечательные пределы или эквивалентные бесконечно малые функции. 41. а)

Задачи 51– 60
  Исследовать на непрерывность функцию y = f (x) и построить ее график.   51.

Задачи 1–10
  Найти производные данных функций и их дифференциалы.   1. а)

Задачи 31– 40
  Найти неопределенные интегралы. Результаты проверить дифференцированием.   31. а)

Задачи 41–50
Вычислить площадь фигуры, ограниченной заданными линиями. Сделать чертеж.   41.

К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ 1
  В методических указаниях даны образцы решения задач, аналогичных предлагаемым в контрольных работах; обращено внимание на основные трудности и типичные ошибки, которые допускаются с

Аналитическая геометрия на плоскости
1. Основные формулы метода координат. · Формула расстояния между двумя точками А(хA;уA) и В(хB;уB):

Эквивалентные бесконечно малые функции
  1. Замечательные пределы: · первый замечательный предел:

Решение.
В рассматриваемых задачах неопределенность вида

Решение.
Очевидно, что     Далее воспользуемся вторым з

Непрерывность функции
  1.Односторонние пределы функции в точке.   · Правый предел:

Производная и дифференциал функции одной переменной
1. Правила дифференцирования.   Пусть даны дифференцируемые функции u(x) и

Производная сложной функции.
Сложная функция (суперпозиция функций) – это функция вида y = f(u), где u = u(x) , т.е. функция от функции. Например, · функция

Решение.
а) . Приведем функцию y к виду, удобному для дифференцир

Исследование функции
  1.Проиллюстрируем на примере некоторые важные свойства графика функции (рис. 4).    

Задача. Исследовать средствами дифференциального исчисления функцию и построить ее график.
Решение. Исследование будем проводить по следующей схеме. 1. Область определения функции. В нашем примере это множество всех действительных чисел,

Неопределенный интеграл, методы интегрирования
    1. Понятия первообразной и неопределенного интеграла.   Функция

Проверка.
 

Проверка.
 

Проверка.

Проверка.

Проверка.
Что и требовалось показать. в.2)

Проверка.
Что и требовалось показать. в.3)

Проверка.
Что и требовалось показать. г.2)

Определенный интеграл, вычисление площадей
  1. Понятие определенного интеграла. Определенный интеграл – это число, которое находится по формуле Ньютона-Лейбница:

Справочный материал по элементарной математике
1. Формулы сокращенного умножения:  

Графики основных элементарных функций
  1. Степенные функции:            

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги