рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Пластическая деформация металлов

Пластическая деформация металлов - раздел Образование, Материаловедение Важнейшим И Наиболее Характерным Свойством Металлов Является Пласт...

Важнейшим и наиболее характерным свойством металлов является пластичность ‑ способность претерпевать деформацию (изменять форму и размеры) без разрушения. В сочетании с высокой прочностью это свойство делает металлы незаменимыми для современной техники. Деформация, которая исчезает после снятия нагрузки, ‑ это упругая деформация. Часть деформации, которая остается после снятия нагрузки, ‑ этопластическая деформация. Чем больше остаточная деформация металла до разрушения, тем выше его пластичность.

При упругом деформировании под действием внешней силы изменяется расстояние между атомами, и в кристаллической решетке возникают дополнительные силы притяжения или отталкивания. Снятие нагрузки устраняет причину изменения межатомного расстояния, атомы становятся на прежние места под действием дополнительных сил, существующих между ними, и упругая деформация исчезает.

Значительно более сложно проходит процесс пластической деформации, которая осуществляется при напряжениях, больших предела упругости металла.

 


В конечном итоге пластическая деформация представляет собой сдвиг одной части кристалла относительно другой. Каков же механизм этого процесса? Естественно предположить одновременное смещение всех атомов одного слоя по отношению к атомам соседнего слоя по плоскости сдвига ММ (рис. 1) – так скользят бумажные листы в пачке бумаги при сдвиге ее верхней части. Усилие, которое надо приложить для осуществления такого сдвига, можно подсчитать и таким образом определить теоретическую прочность. Такой расчет был сделан Я.И. Френкелем, и получилось, что для железа прочность должна быть равна 1300 кгс/мм2, тогда как в действительности предел прочности железа 15 кгс/мм2, т. е. в 100 раз меньше.

Объяснение реального механизма сдвиговых процессов дает теориядислокаций– особого рода линейных несовершенств (дефектов) кристаллической решетки. Представления о дислокациях были введены в металлофизику для того, чтобы объяснить несоответствие между наблюдаемой и теоретической прочностью кристаллов и описать механизм скольжения атомных слоёв при пластической деформации кристаллов. Если на первых этапах развития этой теории представления о дислокациях были предположительными, то затем были получены прямые доказательства их существования, а в настоящее время имеются многочисленные данные наблюдения дислокаций.

Наиболее простой и наглядный способ образования дислокаций в кристалле – сдвиг (рис. 2, а). Если сдвиг произошел только в части плоскости скольжения и охватывает площадку ABCD, то граница AB между участком, где скольжение уже произошло, и ненарушенным участком в плоскости скольжения и будет дислокацией. Атомная плоскость, перпендикулярная к плоскости скольжения и проходящая через AB, является как бы лишней и ее называют экстраплоскостью, а дислокацию ABкраевой дислокацией,обозначаемой знаком ^.

Возможны и другие виды дислокаций, например, винтовая (рис. 3, а) или смешанная (рис. 4, а).Винтовая дислокация получила свое название из-за того, что кристалл при этом можно считать состоящим из одной атомной плоскости, закрученной по винтовой поверхности вокруг дислокации AB (рис. 3, а).

Нетрудно увидеть, что движение дислокаций через кристалл вызывает пластическую (необратимую) деформацию кристалла (рис. 2-4 б, в, г). Перемещение дислокаций происходит по схеме, изображенной на рис. 5.

Из схемы видно, что для перемещения дислокации на одно межатомное расстояние каждый атом экстраплоскости и плоскости в нижней части кристалла смещается на величину значительно меньше межатомного расстояния. При поочередном (эстафетном) смещении атомов дислокация скользит на большие расстояния, через весь кристалл, вызывая его пластическую деформацию.

При сдвигеодной части идеального кристалла относительно другой необходимо разорвать одновременно сразу всемежатомные связи между граничными атомами по обе стороны от плоскости скольжения (рис. 1), а в реальном металле при перемещении дислокации по плоскости скольжения разрываются одновременномежатомные связитолько между двумя соседними цепочками атомов(рис. 5). Именно этим объясняется более низкие значение сдвигающего напряжения и прочности у реальных металлов.

           
 
e = 0 %
 
e = 30 %
 
e = 60 %
 
 

               
 
Свойства: sв, d
 
   
sв
 
   
 
   
d
 
 


 
 

Рис. 6. Изменение структуры и свойств деформированного металла

в зависимости от степени деформации

 

 

Интересно, что и в живой природе используется дислокационный принцип движения, например, змеи и гусеницы обычно ползают за счет образования складки («положительной дислокации») около хвоста и продвижения этой складки в сторону головы.

 

– Конец работы –

Эта тема принадлежит разделу:

Материаловедение

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Пластическая деформация металлов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ББК 34.62
  Методические указания рассмотрены и рекомендованы к изданию методическим семинаром кафедры «Материаловедение и технология металлов» «2» февраля 2012 г.

МЕТАЛЛОГРАФИЧЕСКИЙ АНАЛИЗ
Цель работы: 1. Ознакомиться с приборами и методами исследования металлов. 2. Изучить методы исследования строения металлов. 3. Изучить работу металлогра

I. МЕТОДЫ ИССЛЕДОВАНИЯ МЕТАЛЛОВ
Основной целью любого метода исследования является получение достоверной информации о строении и свойствах изучаемого материала. Чем больше и разнообразнее информация, тем точнее можно предвидеть п

II. ОПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ МЕТАЛЛОВ
Основными механическими свойствами металлов являются прочность, упругость, пластичность, твердость и вязкость. Механические свойства металлов определяют испытанием специальных образцов на соответст

III. ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ
Для изучения структуры металлов и сплавов используются различные физические методы, позволяющие на основании регистрации известных физических величин анализировать структуру и состояние вещества, а

IV. МЕТАЛЛОГРАФИЧЕСКИЙ АНАЛИЗ
Металлографический анализ проводится с целью изучения влияния химического состава и различных видов обработки на структуру металла. Различают макро- и микроструктуру. Соответственно, метал

ИССЛЕДОВАНИЕ МАКРОСТРУКТУРЫ (МАКРОАНАЛИЗ)
Макроанализ дает представление об общем строении металла и позволяет оценить его качество после различных видов обработки: литья, обработки давлением, сварки, термической и хим

МИКРОСКОПИЧЕСКИЙ АНАЛИЗ (МИКРОАНАЛИЗ)
Микроскопический анализ заключается в исследовании структуры специально подготовленных образцов (микрошлифов) при увеличениях от 30-50 до 1500-1800 крат. Микроанализ п

Железоуглеродистые сплавы (сталь, чугун).
1. 1-5% раствор HNO3 в этиловом спирте. Реактив выявляет структуру закаленной, отпущенной и отожженной стали. Травление от нескольких секунд до минут. 2. Насыщенный водный раств

Порядок выполнения работы
  1. Изучить теоретический материал по теме занятия. 2. Ознакомиться с приборами и методами определения твердости по Бринеллю, по Роквеллу, по Виккерсу и микротвердости.

Основные положения
  При проектировании и производстве машин, механизмов, инструментов те или иные детали должны обладать определенными механическими свойствами. Механические свойства металлов характери

Основные положения
    Кристаллиз

Порядок выполнения работы
1. Ознакомится с основными сведениями по теме работы. 2. С помощью биологического микроскопа проследить ход кристаллизации различных солей из пересыщенных водных растворов. Зарисовать нача

Наклеп и рекристаллизация металлов
Наиболее впечатляющим свойством металлов при пластической деформации является деформационное упрочнение, или способность металлов становиться прочнее при деформации. Из дислокационной теории следуе

По изменению твердости при нагреве
  Определение температуры рекристаллизации необходимо для назначения режимов рекристаллизационного отжига– термической обработки для снятия наклепа. Температур

ДИАГРАММЫ СОСТОЯНИЯ И ТЕРМИЧЕСКАЯ ОБРАБОТКА СПЛАВОВ
Цель работы: 1. Изучить основные разновидности диаграмм состояния двойных сплавов. 2. Научиться определять по диаграмме состояния возможность проведения термическ

Основные положения
Для практической работы с двойными сплавами необходимо знать их структуру, возможность ее изменения с изменением температуры и состава сплава и, таким образом, судить о свойствах сплавов и о возмож

В твердом состоянии
  В этой системе в жидком состоянии компоненты А и В растворяются друг в друге, а в твердом н

Диаграмма состояния с ограниченной растворимостью компонентов в твердом состоянии
В этой системе (рис. 4) компонент К в компоненте М в твердом состоянии не растворяется, а М в К растворяется в ограниченных количествах. Обозначим твердый раствор компонента М в К буквой a. Такой т

Между компонентами
Если в процессе кристаллизации компоненты образуют устойчивое химическое соединение, то оно играет роль самостоятельного компонента в системе. С учетом этого, любую диаграмму с химическим соединени

Диаграмма состояния с фазовым превращением в твердом состоянии
Если один или оба компонента при нагревании и охлаждении в твердом состоянии меняют свое кристаллическое строение, то это сказывается на виде диаграммы. На ней появляются дополнительные линии, хара

Правило концентраций
Для определения состава фаз, находящихся в равновесии при любой температуре, лежащей между линиями ликвидус и солидус (например, в точке c), нужно провести через эту точку прямую, параллельн

Правило отрезков (рычага)
Количество твердой фазы в точке c определяется отношением длины отрезка ас, примыкающего к ли

Порядок выполнения работы
  1. Изучить содержание основных положений работы. 2. Разобраться с помощью тренажера со стальной частью диаграммы Fe – Fe3C. 3. Получить навыки определен

Основные положения
  На диаграмме состояния железо–углерод (рис. 1) сплавы, относящиеся к сталям, расположены в интервале концентраций углерода до 2,14 %, т. е. левее точки Е. При температурах ни

Отличие доэвтектоидных сталей от заэвтектоидных по микроструктуре
  В доэвтектоидных и заэвтектоидных сталях имеется одна общая для обоих типов структур составляющая - перлит. Отличить при микроанализе до- и заэвтектоидные стали друг от друга можно

Металлографическое определение углерода в отожженных сталях
  Если углеродистая сталь хорошо отожжена, т. е. приведена в равновесное состояние, то микроструктурным анализом можно определить содержание в ней углерода. Такие определения

Оборудование и материалы для выполнения работы
1. Металлографические шлифы чугунов. 2. Металлографические микроскопы ММУ-3, МИМ-7 и т.п.   Порядок выполнения работы &nbs

Основные положения
  Чугун – это железоуглеродистый сплав с содержанием углерода от 2,14 до 6 %. Кроме этих элементов, в чугуне содержится еще ряд примесей (кремний, марганец, сера,

Основные положения
Цель любого процесса термической обработки заключается в том, чтобы нагревом до определенной температуры, выдержкой и последующим охлаждением с определенной скоростью вызват

Методические указания по выполнению работы
Студенты получают образцы различных марок углеродистых сталей. Для группы студентов в 2-3 человека преподаватель указывает конкретные марки стали для проведения экспериментов (ВСт3; 10; 45; У8; У12

Основные положения
Как было установлено в лабораторной работе «Закалка углеродистых сталей», закаленные стали имеют высокие твердость и прочность, но очень низкие пластические свойства. То есть, сталь в закаленном со

Методические указания по выполнению работы
1. Закаленные в ходе предыдущей лабораторной работы («Закалка углеродистой стали») образцы различных марок углеродистых сталей подвергнуть отпуску при температурах 200, 400 и 600 °С. 2. Ис

Порядок выполнения работы
1. Изучить необходимый теоретический материал по теме занятия. Ознакомиться с механизмом упрочнения алюминиевых сплавов термической обработкой, с изменениями их структуры при закалке и старении.

Основные положения
  Термическая обработка алюминиевых сплавов в зависимости от производственной ситуации и эксплуатационных условий работы детали может преследовать различные цели: 1) Повышени

Упрочняемых термической обработкой
  Дуралюмины обозначаются буквой Д с цифрами, являющимися условными номерами сплавов, например, Д1, Д6, Д16, Д18 и. т. д. Структурное состояние сплава также может обозначаться в его м

Порядок выполнения работы
1. Ознакомиться по методическому пособию с процессом образования сварного соединения. 2. По диаграмме железо-углерод и схеме сварного соединения изучить характерные зоны и участки, их стру

Их образования, структуры и свойств
  Процесс образования сварного соединения начинается с нагрева и расплавления основного и электродного металлов. После образования сварочной ванны жидкий металл подвергается

Возможности термической обработки сварных соединений
  Структурную неоднородность сварного соединения можно в некоторой степени устранить путем термической обработки. Если на термическую обработку возлагается только задача снятия внутре

С качеством предоставленного оригинал-макета
  Подписано к печати . Формат 60х84/16. Бумага «Снегурочка». Печать XEROX. Усл.печ.л. 5,0. Уч.-изд.л. 4,53. Заказ . Тираж 100 экз.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги