рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Краткие теоретические сведения

Краткие теоретические сведения - раздел Образование, Приведены краткие теоретические сведения по разделу   С Позиции Классической Электронной Теории Металлы Рассмат­рив...

 

С позиции классической электронной теории металлы рассмат­риваются как система, состоящая из положительных ионов, обра­зующих узлы кристаллической решетки, и свободных (коллективи­зированных) электронов – электронов проводимости, заполняющих остальное пространство решетки.

Электрический ток в металлических проводниках обусловлен упорядоченным движением – дрейфом электронов проводи­мости под действием внешнего электрического поля.

Количественно это явление описывается законом Ома. Согласно закону Ома в дифференциальной форме плотность тока пропорцио­нальна напряженности поля:

 

j = g Е,

 

где j — плотность электрического тока, А/м2; Е — напряженность поля, В/м; g – коэффициент пропорциональности, представляющий удельную электропроводность, См/м.

На основании классической электронной теории удельная элек­тропроводность у металлов определяется выражением:

 

, (6.1)

 

где е — заряд электрона, Кл = А с; п – концентрация электронов про­водимости, м–3; а — подвижность электронов, обусловленная действи­ем электрического поля, м2/(В с), (а = vcpp/E= eEt/E2m = el/2mv); l – средняя длина свободного пробега электрона между двумя столк­новениями с решеткой в ускоряющем поле напряженностью Е, м; т масса электрона, кг; v – средняя скорость теплового движения электронов в металле, м/с; t – время между двумя столкновениями, с; vcpp – среднее значение дрейфовой скорости, м/с.

У всех металлов величину средней скорости v теплового дви­жения можно считать постоянной. Концентрация п электронов проводимости, как и скорость v, мало зависит от природы метал­ла. Поэтому удельная электропроводность g металлических про­водников зависит в основном от средней длины свободного про­бега электрона l, величина которой существенно влияет на подвижность а электронов: чем меньше l, тем меньше а. Величи­на l, в свою очередь зависит от степени деформации кристаллической решетки металлического проводника. У идеального металли­ческого проводника при температуре, равной 0 К, электроны проводимости не будут сталкиваться с узлами кристаллической решетки, поэтому длина свободного пробега электрона l и, следо­вательно, электропроводность g должны быть бесконечно больши­ми, а удельное сопротивление r равно нулю.

Зависимость удельной проводимости ρ от концентрации и свободных зарядов легко получить, используя закон Ома для участка цепи:

(6.2)

где I – сила тока протекающего по участку цепи; R – сопротивление участка цепи; U – напряжение на концах участка цепи.

Сопротивление проводника простейшим способом определяют, используя закон Ома для участка электрической цепи. Для этого нужно измерить вольтметром разность потенциалов U на концах проводника и амперметром силу тока I в проводнике и поделить одно на другое. Этот метод измерений (по току и напряжению) называют техническим. Однако при таком способе измерения вносятся систематические ошибки, величина которых зависит от сопротивлений измерительных приборов и величины измеряемых сопротивлений.

Действительно, при включении приборов по схеме на рис. 6.1 показания вольтметра соответствуют напряжению на сопротивлении (UV = U), но показания амперметра соответствуют не току через сопротивление, а сумме токов через проводник и вольтметр:

IA = IV + I (6.3)

Рис. 6.1. Схема электрическая принципиальная измерения сопротивления вольтметром и амперметром

 

При включении по схеме на рис. 6.2 показания амперметра соответствуют току через сопротивление (IA = I), но вольтметр показывает не напряжение на сопротивлении, а суммарное напряжение на сопротивлении и амперметре:

UV= IR + IRA (6.4)

Рис. 6.2. Схема электрическая принципиальная измерения сопротивления вольтметром и амперметром

 

Из выражений (6.3) и (6.4) следует, что для уменьшения погрешностей, вносимых при подключении приборов, сопротивление амперметра должно быть малым, а сопротивление вольтметра – большим. Данный метод лежит в основе работы омметров. Прибор прикладывает известную разность потенциалов к измеряемому сопротивлению и измеряет протекающий ток.

Мостовые схемы измерения сопротивлений позволяют избавиться от ошибок, вносимых электроизмерительными приборами, так как здесь эти приборы используются не для измерения силы тока и напряжения, идущих в дальнейшие расчеты, а только в качестве чувствительных индикаторов, работающих либо в режиме постоянного показания, либо, чаще, в режиме отсутствия тока (нуль-метод).

Схема моста Уитстона составлена из сопротивлений Rx, R1, R2, R3, образующих плечи моста (рис. 6.3). В одну из диагоналей мостовой схемы CD включается чувствительный измеритель тока – миллиамперметр. К другой диагонали АВ подключается источник питания с сопротивлением Rд. В плечи моста АС и включаются известные сопротивления R2 и R3. В плечо AD включается измеряемое сопротивление Rx, а в плечо СВ – магазин сопротивлений. Магазин сопротивлений представляет собой набор достаточно точных переменных сопротивлений. Процесс измерения по этой схеме заключается в подборе такого сопротивления магазина, при котором миллиамперметр в диагонали СD показывает отсутствие тока.

 

Рис. 6.3. Схема моста Уитстона

 

При произвольном соотношении сопротивлений через все плечи моста и через гальванометр идут токи. Изменяя сопротивление магазина, добиваются такого состояния, при котором потенциалы точек С и D будут одинаковыми, и ток через миллиамперметр станет равным нулю. Это состояние схемы называется равновесием моста.

В состоянии равновесия разность потенциалов между точками А и С равна разности потенциалов между точками А и D, а
φCφB = φDφB. В соответствии с законом Ома для пассивного участка электрической цепи разность потенциалов на концах участка равна падению напряжения на участке – произведению силы тока на сопротивление этого участка цепи: φ1 – φ2 = IR. Приравнивая падения напряжения на сопротивлениях Rx и R3, R1 и R2, получим следующие выражения:

I3R3 = IxRx (6.5)

I1R1 = I2R2 (6.6)

Эти равенства справедливы только тогда, когда мост находится в состоянии равновесия. Так как ток в диагонали СD при этом равен нулю, то ток I1 протекающий по сопротивлению R1, равен току I3, протекающему по сопротивлению R3, а ток Ix, протекающий по сопротивлению Rx, равен току I2, протекающему по магазину сопротивлений R2. Разделив уравнение (6.5) на уравнение (6.6), получим условие равновесия моста Уитстона:

. (6.7)

Из него следует, что если установить ток в гальванометре равным нулю, то неизвестное сопротивление Rx определяется по остальным трем сопротивлениям:

(6.8)

Активное сопротивление зависит от формы и размеров проводника:

(6.9)

Для однородного проводника с поперечным сечением S и длиной l:

(6.10)

 

6.4. Используемое оборудование

 

Модуль «Измеритель RLC», «Модуль питания», образцы ис­следуемых проводников, соединительные проводники.

 

– Конец работы –

Эта тема принадлежит разделу:

Приведены краткие теоретические сведения по разделу

На сайте allrefs.net читайте: Приведены краткие теоретические сведения по разделу. К... Рецензент...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Краткие теоретические сведения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Техника безопасности при выполнении лабораторных работ
1. При выполнении работ на металлических корпусах приборов при нарушении изоляции может, возникнуть опасное для жизни человека напряжение. В связи с этим запрещаетсясамостоя

ДИЭЛЕКТРИКИ
  Диэлектрические материалы имеют молекулярное или ионное строение. Молекулы, в свою очередь, образованы из атомов, атомы и ионы – из электронов и положительно заряженных ядер. При эт

Краткие теоретические сведения
  В отсутствие внешнего электрического поля все связанные и сво­бодные заряженные частицы диэлектрика, а также его полярные молекулы (диполи) расположены таким образом, что общий элек

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

Краткие теоретические сведения
  Диэлектриче­ская проницаемость e зависит от концентрации молекул п диэлек­трика и поляризуемости a каждой молекулы. В свою очередь, п и a зависят от природы диэлектрик

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

Краткие теоретические сведения
  Активными называют диэлектрики, свойствами которых есть возможность управлять с помощью внешних энергетических воздействий и использовать эти воздействия для создания функциональных

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

Краткие теоретические сведения
  К пьезоэлектрикам относят диэлектрики, которые обладают сильно выра­женным пьезоэлектрическим эффектом. Прямым пьезоэлектрическим эффектом называют явление поляризац

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

Краткие теоретические сведения
  Пробой - потеря электрической прочности под действием напряжённости электрического поля - может иметь место как в образцах различных диэлектри­ков и систем изоляции, так и в электро

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

ПРОВОДНИКИ
  К проводникам электрического тока относятся как твердые тела, так и жидкости, а при соответствующих условиях и газы. Важнейшими практически при­меняемыми в электротехнике твердыми п

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

Краткие теоретические сведения
  Концентрация п электронов проводимости в металлических про­водниках от температуры не зависит, однако от температуры зависит их подвижность а. С увеличением температур

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

Краткие теоретические сведения
  При соприкосновении двух различных металлов между ними возникает контактная разность потенциалов. Это явление открыл итальянский физик А. Вольта в 1797 г. Согласно квантовой теории,

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

ПОЛУПРОВОДНИКИ
  Большая группа материалов с электронной п и дырочной р про­водимостью, удельное сопротивление r которых при температуре 20 °С больше, чем у проводников, но меньше, чем

Краткие теоретические сведения
  При температуре 0 К и в отсутствие другого энергетического воз­действия все валентные электроны полупроводникана­ходятся на энергетических уровнях ВЗ. В этом

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

Краткие теоретические сведения
  Контакты полупроводника с металлом или с другим полупроводником об­ладают иногда выпрямляющими свойствами, т. е. значительно эффективнее про­пускают ток в одном направлении, чем в о

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

МАГНИТНЫЕ МАТЕРИАЛЫ
  Основные типы магнитного состояния вещества. Все вещества в приро­де считаются магнетиками, так как они обладают определенными магнитными свойствами и соответствующим образом взаимо

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

Краткие теоретические сведения
    Метод измерения.Основными свойствами магнитотвердых материалов являются коэффици­ент возврата µΔ и удельная магнитная энергия

Программа работы
  1. Прочитать методические указания по подготовке и проведению лабораторной работы. 2. Получить у преподавателя вариант задания исходных данных к работе. 3. При озн

ЗАКЛЮЧЕНИЕ
  Перечень и объем выполнения лабораторных работ, приведенных в Методических указаниях, соответствует рабочей программе дисциплины «Электротехническое и конструкционное материаловеден

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
  1. Колесов, С.Н. Материаловедение и технология конструкционных материалов : Учебн. для вузов / С.Н. Колесов, И.С. Колесов. – 2-е изд., перераб. и доп. – М. : Высш. шк., 2004. – 519

Коловский Алексей Владимирович
    ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ   Методические указания   Редактор Н. Я. Бодягина Корректор

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги