рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Визначення коефіцієнта відновлення енергії

Визначення коефіцієнта відновлення енергії - раздел Образование, Механічних коливань та хвиль. Правила побудови графічних залежностей фізичних величин Мета Роботи: Дослідити Явище Центрального Удару Кул...

Мета роботи:

Дослідити явище центрального удару куль;

1. Перевірити виконання закону збереження імпульсу, вимярявши імпульс системи куль до і після удару;

2. Визначити коефіцієнт відновлення енергії при центральному ударі куль;

3. Оцінити середню силу удару при зіткненні куль.

Теоретичні відомості. Розглянемо два граничних випадки удару: абсолютно пружний і абсолютно не пружний. Якщо в результаті удару механічна енергія не переходить в інші види енергії, то удар вважається абсолютно пружним. При такому ударі кінетична енергія переходить (цілком чи частково) у потенційну енергію пружної деформації. Через час, що відповідає тривалості деформації, відштовхуючись одне від другого, тіла здобувають первісну форму. При цьому потенційна енергія пружної деформації знову переходить у кінетичну енергію й тіла розлітаються зі швидкостями, значення й напрямок яких визначаються умовами збереження повної механічної енергії і повного імпульсу.

При абсолютно не пружному ударі відбувається пластична деформація куль, які далі рухаються як єдине тіло, а кінетична енергія частково чи цілком перетворюється в енергію деформації і далі у внутрішню енергію. Закон збереження механічної енергії при цьому не виконується, а виконується тільки закон збереження імпульсу.

Рівняння збереження імпульсу та енергії для куль, що мали пружне співударяння мають вигляд

, (1.2)

. (2.2)

Їх розв'язок такий

. (3.2)

. (4.2)

У наведених рівняннях і розв’язках ¾ маси, швидкості куль до удару та їх швидкості після удару.

Рівняння збереження імпульсу при не пружному ударі має вигляд

, (5.2)

і звідси одержимо

. (6.2)

Робота, витрачена на деформацію, дорівнює різниці енергій куль до удару і після удару:

, (7.2)

і після підстановки значення (6) в (7) одержимо

А= . (8.2)

В наведених рівняннях і розв’язках ¾ маси, швидкості до удару та після удару.

Для перевірки закону збереження імпульсу необхідно визначити швидкості руху куль. У данній роботі кулі підвішені як маятники на нитках так, що у вихідному положенні їх центри лежать на одній горизонтальній прямій і вони дотикаються поверхнями (див.Рис.1.2а). Зіткнення між ними відбувається в положенні, що відповідає стану рівноваги. Тому швидкості, що входять у рівняння (1.2) і (2.2), можна визначити по висоті h, із якої кулі опускаються чи на яку вони піднімаються після удару.

Дійсно, відповідно до закону збереження енергії повна механічна енергія замкнутої консервативної системи зберігається , тобто Е12,

 

де - кінетична енергія кульки у нижньому положенні, а - її потенційна енергії у верхньому положенні (див.Рис.1.2б). Із закону збереження енергії випливає

(9.2)

звідкіля

(10.2)

З геометричних міркувань (Рис.1.2) одержимо рівняння для визначення висоти h через довжину підвісу L та кут відхилення a

OA=OB-h=L-h, OA=OC×cosa, (11.2)

або

. (12.2)

У досліді ударною є кулька маси , яка відхиляється на кут a, піднімаючись на висоту h. Після удару перша кулька відхиляється на кут , піднімаючись на висоту , а друга відповідно на кут b та h2. Співвідношення між названими кутами та висотами мають вид

, , . (13.2)

Отже, остаточно із (10.2) з урахуванням (13.2) можна записати співвідношення для швидкостей кульок до удару V1 і після удару U1 та U2 через відповідні кути

, , . (14.2)

 

Закон збереження імпульсу (1.2) для випадку пружного удару з урахуванням напрямків швидкостей куль, виразів (6.2) та умови m2>m1 приводиться до виду

. (15.2)

У випадку не пружного удару закон збереження імпульсу (5.2) має вигляд

. (16.2)

Енергія куль перед пружним ударом має величину

, (17.2)

а після удару

(18.2)

Коефіцієнт відновлення енергії для пружного удару з урахуванням формул (17.2, 18.2) має вид або

. (19.2)

Енергія куль перед не пружним ударом має величину

, (20.2)

а після удару

(21.2)

Коефіцієнт відновлення енергії для не пружного удару з урахуванням формул (20.2, 21.2) буде таким

(22.2)

Границя довірчого інтервалу для коефіцієнта відновлення енергії у випадку пружного удару може бути обчислена за формулою

, (23.2)

а для не пружного удару за формулою

. (24.2)

Для перевірки закону збереження імпульсу для пружного удару ліву та праву частини виразу (7.2) скоротимо на і позначимо їх так

, . (25.2)

Границі довірчого інтервалу для Q та R будемо розраховувати за формулою

(26.2)

Для перевірки закону збереження імпульсу для не пружного удару ліву та праву частини виразу (8.2) скоротимо на і позначимо аналогічно (25.2)

,. (27.2)

Границі довірчого інтервалу для Q та R будемо розраховувати за формулою

. (28.2)

– Конец работы –

Эта тема принадлежит разделу:

Механічних коливань та хвиль. Правила побудови графічних залежностей фізичних величин

КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ... ТЕХНОЛОГІЙ ТА ДИЗАЙНУ МЕТОДИЧНІ ВКАЗІВКИ ДО... Механічних коливань та хвиль...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Визначення коефіцієнта відновлення енергії

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МЕТОДИЧНІ ВКАЗІВКИ ДО ЛАБОРАТОРНИХ РОБІТ
«Фізичні основи механіки. Коливання та хвилі» Для студентів всіх спеціальностей   ЗАТВЕРДЖЕНО на засіданні кафедри фізики прото

Фізичні вимірювання та похибки.
Фізичні вимірювання поділяються загалом на прямі та посередні (непрямі). Прямі вимірювання - вимірювання фізичних величин за допомогою засобів вимірювання (приладів),

Вимірювань.
1. За істинне значення фізичної величини X приймається середньоарифметичне значення N вимірювань: . (11.0)

Вимірюваннях.
Нехай шукана фізична величина А визначається функціональною залежністю від k параметрів Xі

Побудова графіків експериментальних залежностей.
Більш наочними, ніж таблиці, є графіки залежностей досліджуваних фізичних величин. Графіки дають візуальне представлення про зв'язок між величинами, що важливо при інтерпретації отриманих даних, то

Застосування метода найменших квадратів для знаходження виду математичної залежності між фізичними величинами.
Закономірні зв'язки між фізичними величинами, що встановлюються шляхом експериментальних досліджень, бажано подавати у аналітичному вигляді, тобто у вигляді формул. Попередній вигляд формули встано

Розглянемо схему використання МНК для випадку лінійної залежності між фізичними величинами Х (аргумент) та Y (функція), що має вигляд
(21.0.) де α і b –шукані параметри інтерполяційної фор

Правильної геометричної форми
  Мета роботи: 1. Набути навичок використання вимірювальних приладів. 2. Оволодіти методикою опрацювання результатів прямих і непрямих вимірів

Хід виконання роботи
1. Визначити масу m тіла, зважуючи його на технічних вагах. Вимір зробити 5-7 разів. 2. Штангенциркулем виміряти діаметр d досліджуваного ци

Пружне зіткнення куль.
1. Включити «Блок керування та індикації» натисканням кнопки «Мережа (Сеть)»; 2. Натиснути кнопку«Сброс» аби встановити на цифровому табло нульові покази; 3. Поставити кнопку «Пус

Методика обробки результатів вимірювання
Використання Excel: Використовуючи програми СРЗНАЧ() та СТАНДОТКЛОНП () Excel розрахувати середні значення величин K, Q, R та їхні границі довірчого інтервалу. Вик

Вивчення динаміки обертового руху
Мета роботи: 1. Перевірити справедливість основного закону обертового руху за допомогою «маятника Обербека»; 2. Визначити величину моменту інерції «маятника Оберб

Мета роботи
· визначити момент інерції тіла складної геометричної форми Теоретичні відомості.Момент інерції макроскопічного тіла можна знайти розбиттям тіла на нескінченно малі маси

Момент інерції обчислюють за робочою формулою
. (9.4)   Експериментальна установка: Експериментальна установка (Рис.

Завдання 1.Визначення величини моменту інерції тіла складної геометричної форми(рамки крутильного маятника).
1. Вимірювання періоду коливань рамки без пробного тіла: 1.1. Приєднати установку до електричної мережі 220 В , 50 Гц і ввімкнути блок живлення та індикації, натиснувши кнопку «Мережа(

Завдання 2. Визначення величини моменту інерції тіла в залежності від його положення відносно вісі обертання.
Увага! Завдання 2 виконується виключно під орудою викладача або майстра виробничого навчання(лаборанта).

Контрольні питання
1. Виведіть із рівняння Ньютона рівняння коливань крутильного маятника і формулу для періоду коливань

ЛІТЕРАТУРА
1.4. Кучерук І.М., Горбачук І.Т., Луцик П.П.. Загальний курс фізики: Навчальний посібник. –Т. 1.: Механіка. Молекулярна фізика і термодинаміка. – К.: Техніка, 1999. – 536 с. 2.4. Дущенко В

Теоретичні відомості.
Математичний маятник (Рис.1.40) ¾ точкове тіло масою m, підвішене на нерозтяжному підвісі L, розмірами якого,

Екпериментальна установка.
Експериментальна установка для визначення величини прискорення вільного падіння (Рис.2.40) складається з основи, на якій встановлені блок живлення та керування і стійка, в верхній частині якої знах

Хід виконання роботи
1. Встановити максимальну довжину L нитки підвісу маятника і значення довжини занести до Таблиці 1.40.; 2. приєднати блок живлення та індикації до електричної мереж

Таблиці 1.40
№ п/п L (м) t (сек) t2 (сек)      

Методика обробки результатів вимірювання.
Величину прискорення вільного падіння можна визначити для кожної пари данних (Lі , Tі=tі/N) таблиці1.40 із формули (3.40)

Контрольні питання
1. Що ми називаємо математичним маятником? 2. Коливальний рух. Гармонічний коливальний рух. 3. Вивести диференціальне рівняння незгасаючих гармонічних коливань і знайти його розв’

Мета роботи.
Дослідити згасаючі коливання фізичного маятника і за виміряним числом повних коливань Nt і часу релаксації t обчислити: · сталу згасання g, · коефіцієн

Вільні згасаючі коливання мають своїми характеристиками
· час релаксації, · кількість повних коливань за час релаксації. · декремент згасання, · логарифмічний декремент згасання, · добротність коливальної системи,

Q=. (18.41) Екпериментальні дослідження.
Експериментальна установка для визначення характеристик (параметрів) фізичного маятника (Рис.2.41) складається з основи, на якій встановлені блок живлення та керування і стойки, яка може бути нахил

Контрольні питання.
1. Вивести та розв’язати рівняння вільних згасаючих коливань фізичного маятника. 2. Дати визначення та одержати вирази для характеристик вільних згасаючих коливань: часу релаксації, логари

Контрольні питання
1. Напишіть рівняння прямої і зворотної хвилі. 2. Виведіть рівняння стоячої хвилі й опишіть її властивості . 3. Запишіть граничні умови стоячої хвилі в газі, що знаходиться у звук

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги