рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Сегодня известно пять сил физического взаимодействия

Сегодня известно пять сил физического взаимодействия - раздел Образование, КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ УЧЕБНИК Гравитация (Лат. Gravitas — Тяжесть), Электромагнитные Силы, Сильные, ...

Гравитация (лат. gravitas — тяжесть), электромагнитные силы, сильные, слабые и глюонные (англ. qlue — клей). Первые две изучались в классической науке. Силы сильного взаимодействия обеспечивают целостность и устойчивость ядра атома. Силы слабого взаимодействиядействуют при распадах и столкновениях частиц, которые могут возникать и в ядре атома, но существенной роли в придании энергетической устойчивости ядра атома эти частицы не играют. Силы слабого взаимодействия управляют процессом радиоактивного распада частиц.

В конце прошлого века была доказана электромагнитная природа этих сил. К глюонным силамотносят физические силы, которые придают целостность и устойчивость частицам, участвующим в сильном взаимодействии в ядре атома (протоны, нейтроныи некоторые другие). С каждой из этих сил связано определенное физическое поле (гравитационное и т. д.). Кроме этого, считается, что в каждом из этих полей взаимодействие передается соответствующими частицами. Таким образом, существуют частицы, из которых состоит вещество Вселенной, и частицы, которые переносят взаимодействие физических сил в соответствующих им физических полях. Наряду с веществом и физическим полем

в современной физике используется такое физическое состояние, как вакуум(лат. vacuum — пустота). Еще XVII в. был известен термин «пустота Торричелли» (Торричелли — ученик Галилея, изобретатель ртутного барометра), который использовался для обозначения состояния отсутствия вещества и действия сил физического взаимодействия, т. е. пустоты в абсолютном смысле. В технике

«вакуум» — это уровень разряжения газа, когда длина пробега частицы газа превышает линейный размер сосуда, в котором частица находится.

На современном уровне различают истинныйи ложный вакуум. Истинный вакуум— это физическое состояние, при котором среднее значение энергии всех составлявших его физических полей равно нулю. Но в нем рождаются виртуальные(лат. virtuale — воз-

можный) частицы с коротким временем жизни. Ложный вакуум— это неустойчивое физическое состояние, как полагают, в эволюции Вселенной с огромной энергией и предшествующее возникновению атомов и составляющих

их частиц современной физической реальности. В ложном вакууме отсутствуют, как полагают, частицы. Согласно закону сохранения энергии в ложном вакууме положительная энергия равна отрицательной энергии. Положительная энергия является внутренней энергией ложного вакуума, его энергетической сутью, его темной, а не светящейся физической природой. Эта энергия препятствует образованию физических частиц вещества и физических полей. Вторая энергия является энергией, которая ведет к образованию частиц светящейся части Вселенной.

Ниже приведена краткая история развития представлений о строении вещества, которое завершилось созданием квантовой механики (КМ) — первой физической теории о строении атома и законах движения объектов в микромире и положившей начало развитию современных представлений о физическом мире. Созданию КМ предшествовал ряд важных открытий: открытие катодных и рентгеновских лучей, открытие электрона и естественной радиоактивности.

Краткая история изучения первичных элементов вещества, начиная с XVII в. В

1661 г. Р. Бойль — член Лондонского Королевского общества, в книге

«Скептический химик» изложил с атомистической точки зрения начала химии: простые тела у него состоят из атомов одного сорта, сложные тела — из атомов других сортов. К простым телам он относил воду, а остальные — к сложным. Р. Бойль был уверен, что атомы могут делиться на части и что когда-нибудь


 

человечество найдет «тайный агент» расщепления атомов и тогда реализуется

давняя мечта алхимиков о производстве золота, поскольку из расщепленных частей атомов можно будет создавать атомы золота.

Большой вклад в развитие теории вещества внес российский ученый М. В. Ломоносов (1711— 1765), его работа «Элементы математической химии» (1741) развивает атомистические начала химии. Большая заслуга в развитии атомистической химии принадлежит французскому химику А. Лавуазье (1734—

1794), автору курса по химии «Начальный учебник химии» (1789) и основателю термохимии. Он был гильотинирован по решению революцион-

ного трибунала. В истории сохранилась фраза судьи: «Республика не нуждается в ученых».

К началу XIX в. химия стала использовать количественные методы и приобрела уже значительный опыт проведения химического анализа различных веществ. В 1808 г. манчестерский учитель химии Д.Дальтон (1766—1864) опубликовал первый том своего исследования «Новая система химической философии». В этом исследовании вновь высказывается идея атомистической химии, которая, по существу, ничем не отличалась от идей Бойля — Ломоносова

— Лавуазье. Новым у Дальтона было открытие законов для газов, введение понятия атомной массы, определение относительных масс атомов и введение обозначений. Атомы простых химических элементов Д. Дальтон обозначал следующим образом: водород — 8, кислород — О, фосфор — 0 и т. д.

Определение относительной массы атомов Д. Дальтон делал следующим образом: 1 фунт (0,409 кг) воды состоит из 1/8 фунта воды и 7/8 фунта кислорода. Поскольку вес молекул воды одинаков, то в каждой массе молекулы воды l/8 часть массы атома водорода и 7/8 массы кислорода. Далее, если массу атома водорода принять за 1 (единицу), то масса атома кислорода будет равна 7 (семи). Д. Дальтон не разделял мнения Р. Бойля о возможности расщепления атома. Например, золото он считал простым химическим элементом, состоящим из атомов золота, которые можно извлечь из чего-то, но не создать. Химические реакции у Д. Дальтона — это разъединение и соединение атомов, а атомы того же сорта имеют одну и ту же массу.

В 1816 г. английский врач У. Праут в журнале «Философские анналы» высказал идею, что атом водорода является основным атомом, из которого состоят все другие атомы: атом кислорода — из 7 атомов водорода, атом азота —

из 5 атомов водорода и т. д. Праут поддерживал гипотезу Р. Бойля о «тайном агенте» расщепления атомов. Гипотеза У. Праута является первой научной гипотезой о сложном строении атома. Статья У. Праута поставила вопрос о точности измерения атомной массы тел, поскольку измерения Д. Дальтона вызывали сомнения.

Шведский химик И. Я. Берцелиус (1779—1848) взялся за это дело с большой скрупулезностью. Ему удалось повысить точность измерений Д. Дальтона и открыть ряд ранее неизвестных химических элементов. Он проанализировал более 2000 химических соединений. Он же предложил новую символику в обозначении хи-

мических элементов и формул: Fe — первые буквы названия железа — ferum,

Н2O — вода, NH3 — аммиак. В 1860 г. итальянец Станислав Канниццаро (1826—

1910) усовершенствовал методику расчетов Берцелиуса и тем самым

способствовал созданию современной химии.

Хотя идея У. Праута не получила должного признания, но проблема классификации химических элементов приобрела ко второй половине XIX в. актуальное значение (интересовало количество химических элементов в природе

и наличие между ними физических и химических связей). Еще в 1786 г. немецкий химик Н. Г. Марне в книге «О числе химических элементов» высказал идею о физико-химической связи между химическими элементами.

В 1863 г. англичанин Дж. Ньюлендс предложил расположить химические


 

элементы в порядке возрастания их атомных весов, но его идея расположения по

строкам из семи элементов должным образом не была понята. Наконец два автора пришли к новой классификации химических элементов: Ю. Л. Мейер (профессор университета в Бреслау) и Д. И. Менделеев (1834—1907) (профессор Санкт- Петербургского университета). Периодический закон, открытый Д. И. Менделеевым в 1869 г., был справедливо назван выдающимся российским химиком академиком Н. Д. Зелинским (1861 — 1953) «открытием взаимной

связи всех атомов в мироздании».

В своем законе Д. И. Менделеев использовал понятие атомной массы: масса вещества есть именно такое свойство его, от которого должны находиться в зависимости все остальные свойства. Поэтому ближе и естественнее всего считать зависимость между свойствами и сходствами элементов, с одной стороны, и атомными их весами (массами) — с другой.

В периодическом законе Д. И. Менделеева свойства простых тел и свойства соединений элементов находятся в периодической зависимости (или, выражаясь, как писал Д. И. Менделеев, алгебраическим языком, образуют периодическую функцию) от величины атомных весов элементов. Идея классификации Менделеева определенным образом перекликается с идеей Ньютона (у Ньютона масса является решающим фактором в тяготении, у Менделеева — во взаимодействии химических элементов). Точность химических измерений, установление закона зависимости химических и физических свойств соединений

и химических элементов от атомных масс, появление гипотезы о строении вещества итальянского физика и химика А. Авогадро (1776—1856) и открытие бро-

уновского движения в 1827 г. способствовали исследованию проблемы

строения атома. Закон Авогадро, названный по имени его открывателя, был сформулирован в 1811 г. для идеальных газов: в разных объемах идеальных газов при одинаковых величинах температуры и давления содержится одинаковое число молекул.

Впервые эмпирическое доказательство существования атома привел французский физик Жан Перрен в 1908 г. Он вычислил, что в одном грамме водорода содержится 6 • 1023 атомов. Этот эксперимент убедил многих ученых в том, что атомы не являются лишь удачной гипотезой, а существуют на самом деле.

Открытие катодных и рентгеновских лучей.Еще в XVIII в. Б. Франклин высказал предположение о том, что «атомы электричества» меньше атомов тел, в которые они могут проникать. Далее, из исследований М. Фарадея о прохождении электричества через жидкости следовало, что «атомы электричества» имеют дробный заряд и что кроме обычных нейтральных электрических атомов существуют «странные атомы», ионы(в переводе с греческого — идущий). Это атомы имеют избыток или недостаток одного или нескольких электронов. Изучение прохождения электричества через газы привело к открытию катодных лучей. Катодная трубка — это стеклянная, запаянная с двух концов трубка, в которую впаяны две металлические пластинки, соединенные с полюсами источника постоянного тока (катод — с отрицательным полюсом, анод — с положительным полюсом). В 1859 г. немецкий физик Плюккер (1801 — 1868) обнаружил, что при прохождении электрического тока в сильно разряженном пространстве трубки (откачен воздух) с поверхности катода выходят лучи, которые заставляют светиться те части стенок трубки, на которые они падают.

Английский физик У. Крукс (1832—1919) дал следующее объяснение этому явлению: эти частицы отрицательно заряжены и движутся с огромной скоростью,

и они входят в состав атомов, из которых состоят химические элементы. Из его гипотезы выходило, что атом есть составное физическое образование. Многие считали тогда эту гипотезу ложной. Катодные лучи оказались интересным объектом. Исследование их привело к открытию электрона и рентгеновских


 

лучей. Помещение катодных лучей в магнитном поле вело к искривлению их

пути. Направление, в котором шло искривление их пути, говорило, что они заряжены отрицательно. Другим же явлением, связанным с катодными лучами, было свечение лучей зеленого света, которые исходили из тех мест

стеклянной трубки, на которые катодные лучи падали. Если на пути этого

«зеленого свечения» поставить препятствие, то они давали изображение этого препятствия на бумаге, покрытой чувствительной световой эмульсией.

В 1895 г. немецкий физик В. Рентген (1845—1923) чисто случайно открыл это явление, назвав их лучами X.

Открытие электрона.Термин «электрон»был предложен ирландским физиком Д. Стонеем в 1891 г.

В буквальном переводе с греческого языка на русский электрон означает янтарный.Развивая идеи М. Фарадея, Дж. Стоней предложил рассматривать катодные лучи как поток электронов (отрицательно заряженных частиц с одинаковой порцией заряда). Открытие электрона связано с именем английского физика Дж. Дж. Томсона. Для открытия электрона он использовал зависимость ускорения частицы от ее заряда и массы (а = е/т, где а — ускорение, е — заряд частицы, т — масса частицы). Величина ускорения частиц катодных лучей, помещенных в электрическое или магнитное поле, зависит от отношения е/т в электрическом поле, а в магнитном поле еще от их скорости. Комбинируя воздействия на катодные лучи электрического и магнитного полей, Томсон получил два уравнения, решение которых убеждало, что катодные лучи — это поток частиц одинакового заряда и одинаковой массы, движущейся с достаточно высокой скоростью, зависящей от разности потенциалов между катодом и анодом трубки. В дальнейшем Томсон измерил соотношение е/т применительно к частицам, выходящим из металла при освещении его ультрафиолетовым светом. Оказалось, что эти частицы также являются электронами. В начале ХХ в. американский физик Р. Милликен измерил электрический заряд электрона. Заряд электрона равен — 1, масса покоя - 9,109534 • 10-31 кг.

Дж. Дж. Томсону принадлежит первая эвристическая модель атома, которая получила название «изюминки в тесте»: атом — это сфера с плотной однородной положительной электронизацией, в которую встроены отрицательные электроны. Модель не отвечала наблюдаемым фактам: атомы устойчивы, электрически нейтральны, заряд электронов отрицательный, а общая сфера атома, по Томсону, является положительной. Следовательно, возникает вопрос: каким образом атом как система может существовать? В 1904 г. Дж. Дж. Томсон предположил, что электроны вращаются в атоме, но, каков механизм этого вращения в атоме, оставалось

непонятным. В дальнейшем Дж. Дж. Томсон не занимался этой проблемой.

Этой проблемой увлекся молодой физик 3. Резерфорд (1871—1937). Он поступил

в докторантуру Дж. Дж. Томсона в 1895 г. за год до открытия случайным образом французскими физиком А. Беккерелем радиоактивности. Э. Резерфорд сразу же заинтересовался этим необычным для классической физики явлением.

Открытие радиоактивности.В 1898 г. Мария Склодовская-Кюри (1867—

1934) и ее муж Пьер Кюри (1859—1906) обнаружили, что уран в результате излучения превращается таинственным образом в другие химические элементы (полоний и радий). Радий по-латыни означает испускающий лучи, полоний назван

в память о родине Марии Склодовской-Кюри — Польше. Термин

«радиоактивность»был введен в научный язык Марией Склодовской-Кюри в

1899 г. В магнитном поле эти лучи расщеплялись на два излучения. В 1903 г. Э.

Резерфорд дал им название: α- и β-излучение.

Пьера и Марию Кюри особо заинтересовал радий, который в миллион раз оказался активнее, чем уран. Воздействие излучения, исходящего из радия, на раковые клетки показало замедление их роста, поэтому выделение радия в чистом виде привлекло внимание не только физиков, но и медиков и биологов. В 1912 г.


 

во Франции был создан институт Радия, который стал развивать одно из

направлений в науке — радиобиологию. Э. Резерфорд и его сотрудник Фредерик Содди (1877—1956) тщательно изучили процесс излучения радия и пришли к неожиданным выводам.

Радиоактивность связана с превращением одних химических элементов в другие естественным путем. В атоме сосредоточена огромная энергия. Радиоактивностьне зависит от состояния окружающей среды. Радий(Ra) за

счет внутреннего энергетического ресурса превращался вгаз радон (Rn). Это превращение сопровождалось α-излучением. В науке появилась новая химическая формула, выражающая этот процесс, которой не было раньше: Ra - Rn + He (α). Раньше считалось, чтобы получить новое вещество, необходимо внешнее воздействие: соединение, разложение, нагревание и т. д. В то же время излучение радия было постоянным, практически без потери его массы и независимо от состояния окружающей среды.

Э. Резерфорд предположил, что если облучать вещество таким тонким инструментом, как поток α-частиц, ядрами гелия (размер ядра атома равен приблизительно 10-13 см),то можно выяснить

строение атома любого вещества. Он проделал эксперимент, который

позволили ему высказать фразу: «Я знаю, как устроен атом». Металлическая пластинка из бериллия облучалась потоком α-частиц. Приблизительно одна из

3000 α-частиц отскакивала при этом от металлической пластинки, как бы сталкиваясь с положительно заряженной частью атома, поскольку α-частицы имеют положительный заряд.

Тонкие вычисления при объяснении этого эксперимента позволили Э. Резерфорду предложить «планетарную модель атома»: в центре атома расположена положительно заряженная область -ядро, вокруг которого вращаются электроны, как по орбитам вокруг Солнца вращаются планеты. Однако было не ясно, как электрон удерживается в атоме. Н. Бор (1885—1961), который работал в лаборатории Э. Резерфорда в начале прошлого века, был первым из тех, кто предложил объяснение этого явления. Для этой цели он использовал ряд известных к тому времени идей: гипотезу М. Планка, фотонную теорию света А. Эйнштейна и результаты спектрального анализа атома водорода.

 

– Конец работы –

Эта тема принадлежит разделу:

КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ УЧЕБНИК

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ ЮРИДИЧЕСКАЯ АКАДЕМИЯ А Ф Лихин...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Сегодня известно пять сил физического взаимодействия

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лихин А. Ф.
Концепции современного естествознания : учеб. — М ТК Велби, Изд-во Проспект, 2006. - 264 с. ISBN 5-482-00415-5 В учебнике рассмотрены основные концепции современного естествознани

КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ
Учебник Подписано в печать 01.09.05. Формат 60 х 90 1/16 Печать офсетная. Печ. л. 16,5. Тираж 3000 экз. Заказ № 13. 000 «ТК Велби» 107120, г. Москва, Хлебников пер., д. 7

Главные черты научных знаний
А. Новизна. Б. Незавершенность. В. Объективность. Д. Согласованность и целостность. Е. Внутренняя непротиворечивость и внешняя оправданность. Ж. Операциональность. 3. Общедоступность

Роль науки в обществе
Крупномасштабное и многостороннее влияние науки на современное общество наиболее полно проявилось в научно-технической революции (НТР), которая началась с середины прошлого века и продолжается сего

Дискуссия о роли науки в развитии культуры
Начиная с эпохи Возрождения, многие деятели культуры, науки и философии связывали совершенствование природы человека, его общественной сущности с наукой: только любовь к истине, научный

Теоретические и эмпирические науки
По методам, используемым в науках, принято делить науки на теоретические и эмпирические. Слово «теория»заимствовано из древнегреческого языка и означает «мыслимое

Фундаментальные и прикладные науки
С учетом результата вклада отдельных наук в развитие научного познания все науки подразделяются на фундаментальные и прикладные науки. Первые сильно влияют на наш образ мыслей,втор

Понятие естественно-научной картины мира
В основе современной научной картины мира лежит положение о реальности предмета изучения науки. «Для ученого, — писал В. И. Вернадский (1863—1945), — очевидно, поскольку он работает и мысл

Античная наука
Строго говоря, развитие научного метода связано не только с культурой и цивилизацией Древней Греции. В древних цивилизациях Вавилона, Египта, Китая и Индии происходило развитие ма-

Развитие науки в период Средневековья (V-XIV вв. н. э.)
В Средние века в Западной Европе прочно установилась власть церкви в государстве. Этот период обычно называется периодом господства церкви над наукой. Такое понимание не является полностью адекватн

Возрождение
Это переходный период от эпохи Средневековья к эпохе Нового времени. Для эпохи Возрождения характерны критика религии, вера в творческие способности человека, обоснование которой мыслители этого пе

Развитие естествознания и науки в России
Развитие естествознания, науки в России тесно связано с реформаторской деятельностью Петра I. Реформы Петра I — это своеобразный переворот в истории культуры России. Реформам Петра I нужны были нов

Понятие детерминизма
В основе механической физической картины мира лежит гипотеза о существовании атомов, а также принцип детерминизма. Исходным физическим понятием в этой картине мира является вещество, локализованное

Механика Галилея
Во времена молодости Галилея признанным авторитетом в науке считался Аристотель. Поэтому от Галилея требовали соответствия его физических идей принципам физики, учению Аристотеля о природе. Галилей

Физическая теория И. Ньютона
Ньютон (1646—1727) родился в год смерти Галилея. Его научная деятельность была тесно связана с Лондонским Королевским обществом, сообществом талантливых людей, объединенных общим интересом к познан

Ньютона
Спустя семь лет после выхода в свет «Математических начал натуральной философии» Ньютона молодой религиозный деятель Ричард Бэнтли (1662—1742) написал письмо великому физику, в котором попросил его

Механическая картина мира
Популяризация идей механики И. Ньютона связана с именем французского философа Вольтера (1694—1778). При его активном содействии работа Ньютона «Математические начала натуральной философии»

Кратко об истории изучения магнетизма
С XII в. многие исследователи интересовались направлением стрелок компаса строго по линии север — юг. Слово «полюс» (лат. polus — ось, граница, предел чего-то) в словосочетании «

Исследование электрической силы
Исследованием этой проблемы занималось много ученых. Б. Франклину (1706— 1790) — одному из авторов Декларации независимости США (1776) и Конституции США (1787) — принадлежит несколько плодотворных

Понятие физического поля
М. Фарадей вошел в науку исключительно благодаря таланту и усердию в самообразовании. Выходец из бедной семьи, он работал в переплетной мастерской, где познакомился с трудами ученых, философов. Изв

Теория электромагнитных сил Д. Максвелла
Подобно И. Ньютону Д. Максвелл придал всем результатам исследований электрических и магнитных сил теоретическую форму. Произошло это в 70-х годах XIX в. Он сформулировал свою теорию на основе закон

Электромагнитная картина мира
Теория Д. Максвелла была воспринята некоторыми учеными с большим сомнением. Например, Г. Гельмгольц (1821—1894) придерживался точки зрения, согласно которой электричество является «невесомым флюидо

Энергия
Термин «энергия»в буквальном переводе с древнегреческого языка означает деятельный. Считается, что в язык науки он введен англичанином Я. Юнгом (1733—1829), одним из основоположни-

Периодически действующую машину, единственным результатом которой было бы поднятие груза за счет охлаждения теплового резервуара.
«Вечный двигатель» первого рода — это периодически действующая машина, имеющая неиссякаемую внутреннюю энергию, которую можно использовать в виде механического движения рабочего тела (меха

Энтропия
Для уточнения физического содержания второго закона термодинамики Клаузиус ввел понятие энтропии. Энтропия означает в переводе с латинского языка поворот, превращение.

Основные следствия термодинамики XIX в.
Основные положения термодинамики Клаузиуса были теоретически обоснованы. Дж. Максвелл доказал с учетом кинетической энергии молекул идеального газа, что из равновесного состояния идеального газа не

Альберт Эйнштейн
Альберт Эйнштейн — физик-теоретик и крупный общественный деятель. О нем часто говорят, как об ученом, «обвенчанном» с Вселенной, пытавшемся разгадать информацию «тайных послов» Вселенной. К «тайным

Опыт Морли - Майкельсона
Когда А. Эйнштейну было всего два года, американский исследователь А. Майкельсон (офицер ВМФ США, затем профессор прикладных наук) провел эксперимент, идея которого была предло

Преобразования Лоренца
В 1892 г. два физика независимо друг от друга (ирландский физик Фитцджеральд и голландский физик Лоренц) предложили математическое решение, которое сохраняло идею существования эфира и примеряло ре

Специальная теория относительности (СТО)
В основе СТО лежат два принципа или постулата, которые не объясняют, почему должно происходить именно таким образом, а не иначе. Однако построенная на их принятии теория позволяет точно описывать с

Релятивистская механика
Принципы СТО А. Эйнштейн применил к результатам исследования законов механического движения, теплового излучения и движения электромагнитных волн. Это привело к созданию ре- лятивистско

Математическая теория пространства
В поисках преодоления недостатков СТО А. Эйнштейн обратился к результатам исследования пространства математиками. Первой математической теорией пространства является евклидова геометрия. До начала

Рис, 4. Система координат Гаусса для искривленной поверхности
  В этой системе координат масштаб измерения по каждой

Геометрия Б. Римана
Б. Риман обобщил метод построения геометрии Гаусса с двух измерений на произвольное число измерений. Здесь речь идет об абстрактных математических построениях без привычных евклидовых треугольников

ОТО основывается на двух принципах или постулатах
1. Принцип относительности. 2. Принцип эквивалентности тяжелой и инертной масс тела. Первый принцип утверждает, что законы физики должны иметь один и тот же вид не только в инерци

Следствия ОТО
1. Свет в искривленном пространстве-времени не может распространяться с одной и той же скоростью, как требовала СТО. Вблизи источника силы тяготения он распространяется медленнее, чем вдал

Гипотеза М. Планка
М. Планк, изучая проблему теплового излучения, выдвинул в 1900 г. гипотезу, согласно которой механизм «траты» энергии в природе осуществляется минимальными порциями в минимальные единицы времени. И

Резерфорда.
Первый постулат(постулат стационарного состояния атома). Согласно ему, в атоме разрешено стационарное состояние, при котором электрон может находиться на определенной орбите (энерг

Квантовая механика
Поиск математического представления законов движения частиц в атоме связан с деятельностью физиков Э. Шредингера и В. Гейзенберга. Уравнение Э. Шредингера(1887—1961). Он из

Современная квантовая теория
Кратко о событиях в физике, которые способствовали развитию квантовой теории как нового этапа развития квантовой механики. Первой частицей, с которой началось создание квантовой механики,

В СССР в 1954 г., затем в Великобритании — в 1956 г.
Нейтронное излучение губительно для всего живого. Попадая свободно в ткани организма, нейтроны вызывают разрушение ядер атомов химических элементов, из которых он состоит. Способность нейт

Нейтронной модели атома
Эту модель предложили в 1932 г. советские физики Д. Иваненко, Е. Гапон и немецкий физик В. Гейзенберг. Согласно этой модели ядро атома состоит из протонов и нейтронов, за исключением ядра водорода,

Что объяснила протонно-нейтронная модель атома
1. Альфа-излучение,как поток ядер гелия (Не), состоящих из двух протонов и двух нейтронов, происходит из ядер атомов. В ядре есть протоны и нейтроны, которые в силу энергетических

Модели объяснения сил физического взаимодействия в атоме
В первой половине прошлого века не было известно, что протон инейтрон имеют сложные строения. Первоначально речь шла опопытках объяснить устойчивость и целостность

Нейтроны удерживаются в ядре в результате обмена некоей средней
частицей.Впоследствии эту частицу назвали мезоном(греч. mesoc — средний). Вычисления этой частицы показали, что она должна быть по массе в 200 раз

Три группы.
Первая группа называется фотонной.Она представлена фотонами-квантами электромагнитного взаимодействия. К этой группе относят и гипотетическую частицу гравитон, обеспечивающую грави

Модели и концепции происхождения Вселенной
Существующие модели и концепции происхождения Вселенной можно разделить на три группы: концепции классической науки, концепции как космологические следствия теории относительности и концепции, осно

Ольберсом в 1826 г.
Космогонические идеи звездообразования В. Гершеля и Д. Джинса получили дальнейшее развитие с созданием квантовой механики, открытием законов микромира. Особый интерес был проявлен к выяснению проце

Релятивистские модели Вселенной
В 1917 г. А. Эйнштейн построил модель Вселенной. В этой модели для преодоления гравитационной неустойчивости Вселенной использовалась космологическая сила отталкивания, получившая название лямбда-п

Галактик означает расширение пространства, следовательно, в прошлом
было уменьшение объема и плотности вещества.Первоначальную плотность вещества Леметр назвал протоатомом с плотностью 1093 г/см3, из которого Богом был создан мир. Из этой

Галактика Млечный Путь
Наша Галактика, Млечный Путь, имеет спиралеобразную форму: при рассмотрении ее сбоку она имеет вид диска с утолщением в центре, сверху — вид спирали, образованной двумя рукавами, расходящимися из я

Солнечная система
Солнечная система представляет собой систему «звезда — планеты». В нашей Галактике приблизительно 200 млрд звезд, среди которых, как полагают специалисты, некоторые звезды имеют планеты. В Солнечну

Планета Земля -третья планета Солнечной системы
Среднее расстояние от Земли до Солнца составляет 149,6 млн км. Земля имеет форму сфероида — сжатый силами тяготения эллипсоид. Масса Земли — 6 · 1024 кг. Средняя плотность — 5,5 г/см3. Сре

Концепции и теории происхождения и эволюции Земли
Абсолютная геохронологическая шкала.В этой шкале речь идет о концептуальном представлении знаний о нашей планете на основе развития ряда гипотез и учений. Кратко об истории возникн

Теория литосферных плит
В 1912 г. немецкий геофизик А. Вегенер (1880—1930) привел геологические и географические доказательства о существовании единого материка в историческом прошлом Земли. До него, еще в XIX в., высказы

Гипотезы образования Земли
В научной литературе речь идет в основном о двух конкурирующих гипотезах: гетерогенной и гомогенной.Гетерогенной гепотезой утверждается, что в протопланетном диске первоначально пр

Концепция происхождения Луны
Луна — спутник Земли. Масса ее составляет 1/81,3 массы Земли. Это обстоятельство является необычным. У всех других планет Солнечной системы, имеющих спутники, за исключением Плутона, отношение масс

Климат Земли
Термин «климат»имеет греческое происхождение и буквально означает наклон. Древние греки правильно оценили значение наклона угла, под которым лучи Солнца достигают поверхности Земли

Наукой о живых системах является биология
Длительное время биология была описательной наукой. Начиная со второй половины прошлого века, она создала значительный теоретический и экспериментальный задел, который позволяет ей по-новому рассмо

В структурно-организационном плане живое существенно отличается от неживых систем.
Все живые организмы являются сложными системами и имеют свойственные только им структурные и организационные особенности. Они имеют клеточное строение, исключая вирусы, обмен веществ. Они способны

Уровни организационной сложности живых систем
Живые системы или организмы существуют в виде огромного многообразия одноклеточных и многоклеточных организмов. Живое вещество,как утверждал В. И. Вернадский, есть самая м

Единство химического состава всего живого
В состав всех живых тел входят те же химические элементы, что и в неживые тела. Однако их соотношение различно. Основными химическими элементами живых тел являются водород, углерод, кислород, азот,

Единство органического строения
Все живые системы состоят из макромолекул нескольких органических соединений: белков, нуклеиновых кислот, углеводов и жиров (липидов).Углеводы и жиры играют важную роль в живых сис

Генетический код
Генетический код— это свойственная всем живым организмам единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов (см. р

Клеточное строение
Все живые организмы состоят из одной или большого множества клеток. Клетки — это функциональные единицы живого, способные к самовоспроизведению. Термин «клетка», или «ячейка», принадлежит английско

Хромосомы
Хромосомы— это комплексы, образованные одной молекулой ДНК, а не всем полимером ДНК, с белками гистонами или негистонами. Во время деления клетки хромосомы видны в световой микроск

Правила хромосом
1. Правило постоянства числа хромосом — соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека — 46, у кошки — 38, у мушки дрозофилы — 8, у собаки — 78, у к

Существенные свойства деления клеток организмов
В 1879 г. два немецких исследователя — Т. Бовери (1862—1916) и В. Флемминг (1843—1905) — описали деление клетки на две идентичные клетки. Это деление получило название митоза(

Генетика и геном человека
Генетика(греч. genos — происхождение) — наука, изучающая механизм и закономерности наследственности и изменчивости организмов. Большую роль в развитии генетики сыгр

Клонирование
Успехи генетики позволили уточнить такие понятия, как генная инженерия, мутантный ген и клонирование. Генная инженерия— технология или совокупность методов для це

Определение жизни
Общая масса всех живых организмов на Земле равна около 3,6 · 1012 т, что составляет всего лишь около 0,02% от массы всех неживых тел или косного вещества, по терминологии В. Вернадского. С учетом и

Концепции происхождения жизни
Существует несколько концепций происхождения жизни: А — концепция самопроизвольного зарождения жизни на Земле. Б — панспермия (от греч. pan — все, sperma — семя) — ж

Концепции биологической эволюции
Термин «эволюция» (лат. evolutio — развертывание) в науке о живом представляет фундаментальное понятие для объяснения возникновения и развития всего живого. Эволюция подразу

Антропогенез
Проблема происхождения человека (антропогенез) — одна из сложнейших проблем естествознания. У многих древних народов южной Азии и Африки существовали предания о происхождении человека от обезьян (о

Дриопитек — провал — древние люди — новые люди.
Эта схема не имела сведений об австралопитеках. Немецкий ученый Э. Геккель высказал идею, что между обезьянами и древними людьми должна быть стадия, когда возникло существо, у которого человеческие

О прогнозах развития естествознания
В прогнозах развития естествознания особое значение придается следующим направления: 1) дальнейшее развитие достижений естествознания прошлого века; 2) создание новых теорий и эксперимента

Нанотехнология
Нано (греч. nano — карлик) — приставка, обозначающая миллиардную долю единицы измерения (1 нм — 10-9 м). Это технология создания микротел и их систем на основе расположения атомов. Как извес

Исследование человеческого мозга
Цефализация(греч. kephale — голова) — концепция, согласно которой эволюция жизни на Земле является направленным процессом, повышением роли головного мозга, центральной нервн

Генетика
Двадцать первый век часто называют веком биологии, генетики. Успехи генетики прошлого века вселяют как надежды, так и опасения этического, правового и научного характера. Генетики говор

Долголетие
Человек не только биологическое, но и социальное, духовное существо, способное к осознанию своего положения в мире. Исследователей давно интересует проблема биологического долголетия, здоровья и во

Биоэтика
Отношение человека ко всему живому, включая самого себя, составляет основу биоэтики, исследующей нравственные аспекты отношения человека к живым существам, например к эмбрионам человека, лишенным ж

Энергетика
Сторонники традиционной энергетики, основанной на нефти, газе и угле, связывают большие надежды с добычей этих ресурсов со дна Мирового океана. В настоящее время ведется добыча нефти с глубины боле

Направления изучения происхождения жизни
В настоящее время исследователи проявляют большой интерес к двум объектам. К Европе,спутнику Юпитера, открыт в 1610 г. Г. Галилеем. Он находится на расстоянии 671 тыс. км. Его диам

Правовые аспекты развития естествознания в XXI в.
Появившийся в начале настоящего века термин «прозрачность человека»выражает обеспокоенность общественности многих стран о возможности использования достижений естествознания в разв

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги