рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Общий прием вычисления динамического коэффициента при ударе.

Общий прием вычисления динамического коэффициента при ударе. - раздел Образование, Введение и основные понятия. Метод сечений для определения внутренних усилий. Эпюры внутренних усилий при растяжении-сжатии и кручении Предположим, Что Очень Жесткое Тело А Весом Q, Деформацией Кото...

Предположим, что очень жесткое тело А весом Q, деформацией которого можно пренебречь, падая с некоторой высоты H, ударяет по другому телу B, опирающемуся на упругую систему С (рис.2). В частном случае это может быть падение груза на конец призматического стержня, другой конец которого закреплен (продольный удар), падение груза на балку, лежащую на опорах (изгибающий удар), и т. п.

 

Рис.2. Динамическая модель ударного нагружения.

 

В течение очень короткого промежутка времени упругая система С испытает некоторую деформацию. Обозначим через перемещение тела В (местной деформацией которого пренебрежем) в направлении удара. В упомянутых частных случаях при продольном ударе за перемещение соответственно нужно считать продольную деформацию стержня , при изгибающем ударе — прогиб балки в ударяемом сечении и т. п. В результате удара в системе С возникнут напряжения ( или — в зависимости от вида деформации).

Полагая, что кинетическая энергия Т ударяющего тела полностью переходит в потенциальную энергию деформации упругой системы, можем написать:

(1)

Так как к моменту окончания деформации ударяющее тело пройдет путь , то его запас энергии будет измеряться произведенной им работой и будет равен:

(2)

Вычислим теперь . При статической деформации потенциальная энергия численно равна половине произведения действующей силы на соответствующую деформацию:

(3)

Статическая деформация в ударяемом сечении может быть вычислена по закону Гука, который в общем виде можно записать так:

или

Здесь с — некоторый коэффициент пропорциональности (называемый иногда жесткостью системы); он зависит от свойств материала, формы и размеров тела, вида деформации и положения ударяемого сечения. Так, при простом растяжении или сжатии , и ; при изгибе балки, шарнирно закрепленной по концам, сосредоточенной силой Q посредине пролета и ; и т.д.

Таким образом, выражение для энергии может быть переписано так:

В основу этой формулы положены две предпосылки: а) справедливость закона Гука и б) постепенный — от нуля до окончательного значения — рост силы Q, напряжений и пропорциональных им деформаций .

Опыты с определением модуля упругости по наблюдениям над упругими колебаниями стержней показывают, что и при динамическом действии нагрузок закон Гука остается в силе, и модуль упругости сохраняет свою величину. Что касается характера нарастания напряжений и деформаций, то и при ударе деформация происходит, хотя и быстро, но не мгновенно; постепенно растет в течение очень короткого промежутка времени от нуля до окончательного значения; параллельно росту деформаций возрастают и напряжения .

Реакция системы С на действие упавшего груза Q (назовем ее ) является следствием развития деформации ; она растет параллельно от нуля до окончательной, максимальной величины и, если напряжения не превосходят предела пропорциональности материала, связана с ней законом Гука:

где с — упомянутый выше коэффициент пропорциональности, сохраняющий свое значение и при ударе.

Таким образом, обе предпосылки для правильности формулы (3) принимаются и при ударе. Поэтому можно считать, что вид формулы для при ударе будет тот же, что и при статическом нагружении системы С силой инерции , т. е.

(Здесь учтено, что по предыдущему .) Подставляя значения Т и в уравнение (1), получаем:

или

Отсюда

или, удерживая перед радикалом для определения наибольшей величины деформации системы в направлении удара знак плюс, получаем:

(4)

Так как напряжения и усилия по закону Гука пропорциональны деформации, то

(5)
(6)

Из этих формул видно, что величина динамических деформаций, напряжений и усилий зависит от величины статической деформации, т. е. от жесткости и продольных размеров ударяемого тела; ниже это дополнительно будет показано на отдельных примерах. Величина

(7)

в данном случае представляет собой динамический коэффициент.

Заменяя в этой формуле Н на , где — скорость ударяющего тела в начальный момент удара, получаем:

(8)

Кроме того, так как

где —энергия ударяющего тела к моменту начала удара, то выражение для динамического коэффициента может быть представлено еще и в таком виде:

(9)

Если мы в формулах (4) и (5) положим , т. е. просто сразу приложим груз Q, то и ; при внезапном приложении силы Q деформации и напряжения вдвое больше, чем при статическом действии той же силы.

Наоборот, если высота падения груза Н (или скорость ) велика по сравнению с деформацией , то в подкоренном выражении формул (4) — (8) можно пренебречь единицей по сравнению с величиной отношения . Тогда для и получаются следующие выражения:

и (10)

При очень большой величине отношения можно пренебречь и единицей, стоящей перед корнем, т. е. написать:

и (11)

Динамический коэффициент в этом случае определяется по формуле

(12)

Необходимо отметить, что в то время как пренебрежение единицей 2Н в подкоренном выражении допустимо уже при (неточность приближенных формул будет не больше 5%). пренебрежение единицей, стоящей перед корнем, допустимо лишь при очень большой величине отношения .

Так, например, для того чтобы приближенные формулы (11) и (12) давали погрешность не более 10%, отношение должно быть больше 110.

Формулы и , в которых выражается через , могут быть использованы также для решения задачи о встречном ударе тел, двигающихся с некоторой скоростью, при определении напряжений в цилиндре двигателя внутреннего сгорания, вызванных резким повышением давления газа при вспышке горючей смеси и др. На этом основании их можно считать общими формулами для расчета на удар.

Обобщая сказанное выше, можем наметить следующий общий прием решения задач на определение напряжений при ударе. Применяя закон сохранения энергии, надо:

1) вычислить кинетическую энергию ударяющего тела Т;

2) вычислить потенциальную энергию тел, воспринимающих удар, под нагрузкой их силами инерции при ударе; потенциальная энергия должна быть выражена через напряжение (,) в каком-либо сечении, через деформацию (удлинение, прогиб) или через силу инерции ударяющего тела;

3) приравнять величины и Т и из полученного уравнения найти или непосредственно динамическое напряжение, или деформацию, а по ней, пользуясь законом Гука, напряжение или силу и соответствующие ей динамические напряжения и деформации.

Описанный общий прием расчета на удар предполагает, что вся кинетическая энергия ударяющего тела целиком переходит в потенциальную энергию деформации упругой системы. Это предположение не точно. Кинетическая энергия падающего груза частично превращается в тепловую энергию и энергию неупругой деформации основания, на которое опирается система.

Вместе с тем при высоких скоростях удара деформация за время удара не успевает распространиться на весь объем ударяемого тела и в месте удара возникают значительные местные напряжения, иногда превосходящие предел текучести материала. Так, например, при ударе свинцовым молотком по стальной балке большая часть кинетической энергии превращается в энергию местных деформаций. Подобное же явление может иметь место даже и в том случае, когда скорость удара мала, но жесткость или масса ударяемой конструкции велика.

Указанные случай соответствуют большим величинам дроби . Поэтому можно сказать, что описанный выше метод расчета применим, пока дробь не превышает определенной величины. Более точные исследования показывают, что ошибка не превышает 10% если . Так как эта дробь может быть представлена в виде отношения , то можно сказать, что изложенный метод применим, пока энергия удара превышает не более чем в 100 раз потенциальную энергию деформации, соответствующую статической нагрузке конструкции весом ударяющего груза. Учет массы ударяемого тела при ударе позволяет несколько расширить пределы применимости этого метода в тех случаях, когда масса ударяемого тела велика.

Более точная теория удара излагается в курсах теории упругости.

Лекция № 50. Оценка прочности при ударной нагрузке.

Вид формул, полученных для динамического коэффициента, показывает, какие большие качественные различия ведет за собой количественное изменение периода действия силы на тело.

Рассмотрим некоторые случаи удара при простейших деформациях. При этом для нахождения коэффициента динамичности применим основные полученные формулы для динамического коэффициента.

Для определения , и используем зависимости:

и

В случае продольного растягивающего или сжимающего удара (Рис 1)

Рис.1. Модель продольного удара.

 

Для вычисления динамического коэффициента может быть выбрано одно из следующих выражений:

После этого без затруднений вычисляются , и .

Приближенная формула для вычисления напряжений в данном частном случае получает такой вид:

и

Замечаем, что как при статической, так и при динамической нагрузке напряжение в сжатом стержне зависит от величины сжимающей силы и от площади поперечного сечения стержня.

Но при статическом действии груза Q передающаяся на стержень сила равна Q и не зависит от размеров и материала стержня, при ударе же величина силы , вызывающей напряжения в стержне, зависит от ускорения, передающегося от ударяемого тела на ударяющее, т. е. от величины промежутка времени, в течение которого изменяется скорость ударяющего тела. В свою очередь этот промежуток времени зависит от величины динамической продольной деформации , от податливости стержня. Чем эта величина больше, т. е. чем меньше модуль Е и чем больше длина стержня l, тем больше продолжительность удара, меньше ускорение и меньше давление .

Таким образом, при равномерном распределении напряжений, одинаковом во всех сечениях стержня, динамическое напряжение будет уменьшаться с увеличением площади поперечного сечения стержня и с увеличением его податливости (т. е. с увеличением длины и уменьшением модуля упругости Е); именно поэтому смягчают удар всякие рессоры и пружины, расположенные между ударяющимися деталями. Все это и отражают приведенные выше формулы. В частности, с известным приближением можно считать, что при продольном ударе величина напряжений зависит уже не от площади, а от объема стержня.

Вычислив величину динамического напряжения, мы можем теперь написать условие прочности в виде

где []—допускаемая величина нормальных напряжений при ударе, равная для пластичного материала . Величину коэффициента запаса можно было бы выбрать равной величине основного коэффициента запаса при статическом действии нагрузок, так как динамичность нагрузки уже отражена. Однако, ввиду некоторой упрощенности изложенного метода расчета, этот коэффициент принимают несколько повышенным — до 2. Кроме того, обычно в этих случаях применяют материал более высокого качества (в отношении однородности и пластических свойств).

При изгибе величина статической деформации , представляющей собой статический прогиб балки с в месте удара, зависит от схемы нагружения и условий опирания балки.

Так например, для балки пролетом l, шарнирно закрепленной по концам и испытывающей посредине пролета удар от падающего с высоты Н груза Q (Рис.2, а),

а) двухопорная балка, б) консольная
Рис.2. Модели удара:

получаем:

для консоли, испытывающей удар от груза Q, падающего на свободный конец консоли (Рис 2, б):

Подставляя в формулу для коэффициента динамичности значения или , находим , а затем и величину динамических напряжений и деформаций. Так например, в случае балки на двух опорах при вычислении динамического напряжения имеем такую формулу:

Условие прочности в этом случае напишется:

Приближенные формулы для вычисления и в случае удара по балке на двух опорах получают такой вид:

Аналогичные выражения для и получаются и в случае удара по консоли. Имея в виду, что

и

можем представить выражение для еще и в таком виде:

Из последней приближенной формулы видно, что динамические напряжения при изгибе балки зависят от модуля упругости материала, объема балки, формы ее поперечного сечения (отношение ), а также от схемы нагружения и условий опирания балки (в данном случае в подкоренном выражении стоит ; для балок, иначе загруженных и закрепленных, числовой коэффициент у будет другим). Таким образом, в балке прямоугольного сечения высотой h и шириной b, поставленной на ребро или положенной плашмя, наибольшие напряжения при ударе будут одинаковы и равны (по приближенной формуле):

так как в обоих случаях

Как известно, при одинаковой статической нагрузке наибольшие напряжения в балке, положенной плашмя, будут в отношении больше, чем напряжения в балке, поставленной на ребро. Сказанное выше, разумеется, справедливо лишь до тех пор, пока явление удара происходит в пределах упругости.

Сопротивление балок ударным нагрузкам зависит и от момента сопротивления и от жесткости балки. Чем больше податливость, деформируемость балки, тем большую живую силу удара она может принять при одних и тех же допускаемых напряжениях. Наибольший прогиб балка дает в том случае, когда во всех ее сечениях наибольшие напряжения будут одинаковыми, т. е. если это будет балка разного сопротивления; такие балки при одном и том же допускаемом напряжении дают большие прогибы, чем балки постоянного сечения, и значит, могут поглощать большую энергию удара. Поэтому рессоры обычно и делают в форме балок равного сопротивления.

Рассмотрим теперь задачу определения напряжений при скручивающем ударе.

Если вращающийся вал внезапно останавливается торможением одного из его концов, а на другом его конце на него передается живая сила маховика , скручивающая вал, то напряжения также могут быть определены указанным выше методом. Вал будет скручиваться двумя парами сил (силы инерции маховика и силы торможения) с моментом М.

В данном случае

и

Следовательно,

и

так как

и

Имея в виду, что живая сила маховика T0 равна

где — момент инерции массы маховика, а — угловая скорость, можем написать:

Замечаем, что и при скручивающем ударе наибольшие напряжения зависят от модуля упругости и от объема вала.

 

– Конец работы –

Эта тема принадлежит разделу:

Введение и основные понятия. Метод сечений для определения внутренних усилий. Эпюры внутренних усилий при растяжении-сжатии и кручении

Метод сечений для определения внутренних усилий... Эпюры внутренних усилий при растяжении сжатии и кручении... Эпюры внутренних усилий при прямом изгибе...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Общий прием вычисления динамического коэффициента при ударе.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЭПЮРЫ ВНУТРЕННИХ УСИЛИЙ ПРИ РАСТЯЖЕНИИ-СЖАТИИ
Растяжением или сжатием называется такой простой вид сопротивления, при котором внешние силы приложены вдоль продольной оси бруса, а в поперечном сечении его возникает только нормальная сила.

ЭПЮРЫ ВНУТРЕННИХ УСИЛИЙ ПРИ КРУЧЕНИИ
Кручением называется простой вид сопротивления, при котором к брусу (валу) прикладываются внешние пары сил в плоскостях, совпадающих с поперечным сечением вала, а в последних возникает только внутр

ДИФФЕРЕНЦИАЛЬНЫЕ ЗАВИСИМОСТИ МЕЖДУ ВНУТРЕННИМИ УСИЛИЯМИ ПРИ ИЗГИБЕ
Рассмотрим расчетную схему балки с произвольной распределенной нагрузкой (рис.2).

НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ. ТЕНЗОР НАПРЯЖЕНИЙ
Вектор напряженийpn является физическим объектом, имеющим длину, направление и точку приложения. В этом смысле он обладает векторными свойствами. Однако этому объекту присущи неко

ТЕНЗОР ДЕФОРМАЦИИ
Рассмотрим вначале случай плоской деформации (рис. 4). Пусть плоский элемент MNPQ перемещается в пределах плоскости и деформируется (изменяет форму и размеры). Координаты точек элемента до и

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ УПРУГОЙ ДЕФОРМАЦИИ
Рассмотрим вначале элементарный объем dV=dxdydz в условиях одноосного напряженного состояния (рис. 1). Мысленно закрепим площадку х=0 (рис. 3). На противоположную площадку действует с

МЕХАНИЧЕСКИЕ СОСТОЯНИЯ ДЕФОРМИРУЕМЫХ ТЕЛ
В упругом состоянии деформации обратимы, и вся энергия, затраченная на деформирование, при разгрузке возвращается (диссипация энергии отсутствует). Для любого твердого тела процесс деформиро

ДИАГРАММЫ УПРУГО-ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
Основным опытом для определения механических характеристик конструкционных материалов является опыт на растяжение призматического образца центрально приложенной силой, направленной по продольной ос

ПОСТАНОВКА ЗАДАЧ ТЕОРИИ НАДЕЖНОСТИ
Согласно ГОСТ 27.002—89 «Надежность в технике. Термины и определения» надежность конструкции есть свойство сохранять во времени способность к выполнению требуемых функций в заданных режимах.

РАСЧЕТНЫЕ НАГРУЗКИ, КОЭФФИЦИЕНТЫ ЗАПАСА
Условие прочности (1) записано через напряжения, которые вычисляются через внешние нагрузки, приложенные к конструкции. Пусть внешние нагрузки определены с точностью до одного параметра S, а

РАСЧЕТЫ ПО ДОПУСКАЕМЫМ НАГРУЗКАМ И ПО ДОПУСКАЕМЫМ НАПРЯЖЕНИЯМ
Если пренебречь случайным разбросом прочностных свойств материала конструкции, то расчетное и нормативное значения, а также среднее значение несущей способности R совпадают RP

НАПРЯЖЕНИЯ ПРИ РАСТЯЖЕНИИ (СЖАТИИ) ПРИЗМАТИЧЕСКИХ СТЕРЖНЕЙ. РАСЧЕТ НА ПРОЧНОСТЬ
Переходя к изучению введенных основных видов деформации стержней, ограничимся рассмотрением стержней постоянного поперечного сечения с прямолинейной осью, т. е. призматических стержней. Начн

ПОНЯТИЕ О КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ, ПРИНЦИП СЕН-ВЕНАНА
Даже для призматического стержня равномерное распределение напряжений по поперечному сечению не всегда имеет место. Так, отклонения от равномерного распределения напряжений наблюдаются в окрестност

ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ И ПЕРЕМЕЩЕНИЙ
Определим упругие деформации стержня предполагая, что изменение его длины при растяжении , называемое абсолютной продольной деформацией

Применение к статически определимым системам.
В предыдущем изложении методов расчета мы исходили из основного условия прочности . Это неравенство требует выбора размеров конструкции с та

Расчет статически неопределимых систем по способу допускаемых нагрузок.
Совсем другие результаты мы получим, если будем применять способ допускаемых нагрузок к статически неопределимым системам, стержни которых изготовлены из материала, обладающего способностью к больш

Подбор сечений с учетом собственного веса (при растяжении и сжатии).
При установлении внешних сил, растягивающих или сжимающих элементы конструкций, мы до сих пор игнорировали собственный вес этих элементов. Возникает вопрос, не вносится ли этим упрощением расчета с

Деформации при действии собственного веса.
При определении влияния собственного веса на деформацию при растяжении и сжатии стержней придется учесть, что относительное удлинение различных участков стержня будет переменным, как и напряжение

Вычисление моментов инерции и моментов сопротивления для простейших сечений.
Известно, что интеграл вида является моментом инерции сечения относительно нейтральной оси. Здесь

Общий способ вычисления моментов инерции сложных сечений.
При проверке прочности частей конструкций нам приходится встречаться с сечениями довольно сложной формы, для которых нельзя вычислить момент инерции таким простым путем, каким мы пользовались для п

Наибольшее и наименьшее значения центральных моментов инерции.
Как известно, центральные моменты инерции являются наименьшими из всех моментов относительно ряда параллельных осей. Найдем теперь крайние значения (максимум и минимум) для центральных мом

РАЦИОНАЛЬНЫЕ ФОРМЫ ПОПЕРЕЧНЫХ СЕЧЕНИЙ ПРИ ИЗГИБЕ
Наиболее рациональным следует признать сечение, обладающее минимальной площадью при заданной нагрузке (изгибающем моменте) на балку. В этом случае расход материала на изготовление балки, будет мини

ПОНЯТИЕ О СОСТАВНЫХ БАЛКАХ
Работу составных балок проиллюстрируем на простом примере трехслойной балки прямоугольного поперечного сечения. Если слои между собой не связаны и силы трения между ними отсутствуют, то каждый из н

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ПРЯМОГО ИЗГИБА ПРИЗМАТИЧЕСКОГО СТЕРЖНЯ
Определено, что мерой деформации призматического стержня при прямом чистом изгибе является кривизна нейтрального слоя. Можно показать, что с достаточной для инженерных расчетов точностью этим тезис

Понятие о сдвиге. Расчет заклепок на перерезывание.
Мы изучали, что при простом растяжении или простом сжатии две части стержня, разделенные наклонным сечением, стремятся не только оторваться друг от друга, но и сдвинуться одна относит

Изгиб балки при действии продольных и поперечных сил.
На практике очень часто встречаются случаи совместной работы стержня на изгиб и на растяжение или сжатие. Подобного рода деформация может вызываться или совместным действием на балку продольных и п

Внецентренное сжатие или растяжение.
Вторым практически важным случаем сложения деформаций от изгиба и от продольных сил является так называемое внецентренное сжатие или растяжение, вызываемое одними продольными силами. Этот вид дефор

Примем следующий порядок расчета.
1. Разлагаем все внешние силы на составляющие P1x, P2x,..., Pnx и P1y, P2y,..., Pny. 2. Строим эпюры изгиб

Подбор сечений балок равного сопротивления.
Все предыдущие расчеты относились к балкам постоянного сечения. На практике мы имеем часто дело с балками, поперечные размеры которых меняются по длине либо постепенно, либо резко. Ниже ра

Определение деформаций балок переменного сечения.
При определении прогибов и углов поворота для балок с переменным сечением надлежит иметь в виду, что жесткость такой балки является функцией от х. Поэтому дифференциальное уравнение изогнуто

Общие понятия.
К числу статически неопределимых балок может быть отнесена балка на упругом основании. Так называется балка, опирающаяся по всей своей длине (Рис.1) на упругое основание, оказывающее в каждой точке

Расчет бесконечно длинной балки на упругом основании, загруженной одной силой Р.
Наиболее просто решается задача об изгибе бесконечно длинной балки, нагруженной одной сосредоточенной силой (Рис.2). Помимо непосредственного практического значения решение этой задачи позволит пут

Постановка задачи.
Кроме рассмотренных способов вычисления прогибов и углов поворота сечений балок существует более общий метод, пригодный для определения деформаций любых упругих конструкций. Он основан на применени

Вычисление потенциальной энергии.
При вычислении потенциальной энергии будем предполагать, что деформации не только материала, но и всей конструкции, следуя закону Гука, пропорциональны нагрузкам, т. е. линейно с ними связан

Расчетная модель к теореме Кастильяно.
При переходе от состояния балки к состоянию все нагрузки Р опустятся, знач

Теорема Максвелла—Мора.
Прогиб балки в точке приложения сосредоточенной силы Р равен: аналогичное выражение мы имеем и для угла поворота

Метод Верещагина.
Способ Максвелла — Мора в значительной степени вытеснил на практике непосредственное применение теоремы Кастильяно. В справочниках обычно приводятся таблицы интегралов

Общие понятия и метод расчета.
До сих пор мы рассматривали только статически определимые балки, у которых три опорные реакции определялись из условий равновесия. Очень часто, по условиям работы конструкции, оказывается необходим

Способ сравнения деформаций.
Выполняя решение уравнения , названного уравнением совместности деформаций, можно рассуждать следующим образом. Прогиб точки В

Выбор лишней неизвестной и основной системы.
В предыдущем примере мы выбрали за лишнюю неизвестную реакцию В. Мы могли бы выбрать и момент . Соответственно изменилась бы основна

Общий план решения статически неопределимой задачи.
Таким образом, общий метод решения, статически неопределимых задач распадается на ряд отдельных этапов. В дух предыдущих лекциях приведены два варианта решения задачи: с лишней реакцией

Определение деформаций статически неопределимых балок.
После того, как определены опорные реакции, построены эпюры изгибающих моментов и поперечных сил, подобраны сечения статически неопределимой балки, определение ее деформаций ничем- не отличается от

Связи, накладываемые на систему. Степень статической неопределимости.
Для решения большинства статически неопределимых встречающихся на практике задач обозначенные приемы оказываются, однако, далеко не достаточными. Поэтому необходимо остановиться на более общих мето

Напряжения в сферических толстостенных сосудах.
На фиг. 547 изображен элемент, вырезанный из толщи стенки толстостенного сферического сосуда; внутренний радиус этого элемента равен r, а наружный

Диск равного сопротивления.
Получено, что, изменение напряжений и вдоль радиуса диска постоянной толщины весь

Формула Эйлера для определения критической силы.
Для нахождения критических напряжений надо вычислить критическую силу , т. е. наи

Влияние способа закрепления концов стержня.
Формула Эйлера была получена путем интегрирования приближенного дифференциального уравнения изогнутой оси стержня при определенном закреплении его концов (шарнирно-опертых). Значит, найденное выраж

Проверка сжатых стержней на устойчивость.
Ранее было отмечено, что для сжатых стержней должны быть произведены две проверки: на прочность на устойчивость

Основные характеристики цикла и предел усталости
  Рассмотрим вначале случай одноосного напряженного состояния. Закон изменения главного напряжения о во времени представлен кривой, показанной на рис. 6. Наибольшее

Влияние состояния поверхности и размеров детали на усталостную прочность
Так как при циклических напряжениях начало разрушения связано с образованием местной трещины, понятна та роль, которую играет в усталостной прочности детали состояние ее поверхности. Совершенно оче

Коэффициент запаса усталостной прочности и его определение
Построим диаграмму усталостной прочности и нанесем на ней рабочую точку цикла. Диаграмма строится, как это было показано выше, на основе заданных механических характеристик материала

Постановка задачи. Явление Резонанса.
До сих пор мы решали основную задачу сопротивления материалов, определяли размеры поперечных сечений частей конструкции и выбирали для них материал лишь при статическом действии нагрузок.

Влияние резонанса на величину напряжений.
Если на балке расположена машина с вращающимся грузом, имеющим эксцентриситет по отношению к оси вращения (Рис.1,). то  

Вычисление напряжений при колебаниях.
Упругая система, выведенная каким-либо путем из равновесия, приходит в колебательное движение. Колебания происходят около положения упругого равновесия, при котором в нагруженной системе имели мест

Учет массы упругой системы при колебаниях.
Если колеблющаяся система, несущая груз Q, обладает довольно значительной распределенной массой (число степеней свободы, следовательно, велико), то упрощенные расчеты, будут иметь уже значит

Основные положения
Явление удара получается в том случае, когда скорость рассматриваемой части конструкции или соприкасающихся с ней частей изменяется в очень короткий период времени. При забивке свай тяжелы

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги