рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Титан и его сплавы

Титан и его сплавы - раздел Образование, МАТЕРИАЛОВЕДЕНИЕ   Важнейшее Преимущество Титана И Титановых Сплавов Перед Други...

 

Важнейшее преимущество титана и титановых сплавов перед другими конструкционными материалами – это высокая удельная прочность и жаропрочность в сочетании с хорошей коррозионной стойкостью, практическое отсутствие хладноломкости наряду с высокой удельной прочностью. Кроме того, титан и его сплавы, несмотря на плохую обрабатываемость резанием, хорошо свариваются, обрабатываются давлением в холодном и горячем состоянии, термически упрочняются, что имеет важное значение для их применения в ряде отраслей техники. Это относится в первую очередь к авиа-, ракето- и судостроению, химическому, пищевому и транспортному машиностроению.

Титан – металл серебристо-белого цвета с плотностью ρ = 4,505 г/см3 и температурой плавления 1672 °С. Титан может находиться в двух полиморфических модификациях: Tiα до 882 ºС с гексагональной плотноупакованной решеткой и высокотемпературной Tiβ выше этой температуры с объёмноцентрированной кубической решеткой до температуры плавления. Имеет высокие механические свойства σВ = 300 МПа, δ = 40 %, не имеет температурного порога хладноломкости, парамагнитен. Титан легкий, прочный, тугоплавкий, коррозионностойкий за счет возникновения оксидной пленки TiO2.

Механические свойства титана определяются составом: чем в нем меньше примесей, тем ниже прочность и выше пластичность (рис. 15.1). Характерная особенность титана – необычайно высокая чувствительность к примесям атмосферных газов: кислороду, азоту, водороду и углероду, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: оксиды, нитриды, гидриды, карбиды, повышая его характеристики прочности и снижая пластичность.

δ
О2 % (по массе)
О2 % (по массе)
НУ
σ0,2
σв

Рис. 15.1. Влияние примеси кислорода на механические свойства титана

Кроме того, ухудшается обработка давлением, свариваемость и коррозионная стойкость. Поэтому содержание этих примесей ограничивается сотыми и тысячными долями процента.

Полиморфизм титана, хорошая сплавляемость с другими металлами дает широкие возможности получения сплавов на основе титана с самыми разными механическими свойствами благодаря легированию, термической обработке, деформационному упрочнению.

Элементы, легирующие титан, подразделяются на:

· повышающие температуру полиморфного превращения и расширяющие область существования α-модификации: Al, Ga, La, C, O, N;

· понижающие температуру полиморфного превращения и расширяющие область существования β-модификации: Mo, V, Nb, Ta, Hf, W, Cr, Mn, Fe, Co и другие.

Алюминий является основным легирующим элементом для титана и содержится почти во всех промышленных сплавах. Он повышает удельную прочность сплава, жаропрочность, модуль упругости, уменьшает склонность к водородной хрупкости. Из-за уменьшения технологической пластичности содержание Al ограничивается 7 %.

Для повышения рабочих характеристик жаропрочных сплавов с высоким содержанием алюминия главным образом используют добавки ванадия, молибдена и вольфрама.

Цирконий повышает термическую стабильность, увеличивает предел ползучести, прочность при низких и средних температурах, уменьшает склонность к хладноломкости и улучшает свариваемость.

Рис. 15.2. Твердость сплавов титана с различным содержанием хрома после отжига
при температуре 600 ºС (1) и охлаждения из β-области с различными скоростями:
резкая закалка в растворе щелочи (2), закалка в воде (3), охлаждение на воздухе (4)

 

Хром считается одной из наиболее перспективных легирующих добавок к титану наряду с молибденом. Сплавы титана с хромом отличаются превосходным сочетанием прочности и пластичности (рис. 15.2).

Ниобий повышает стабильность поверхности, увеличивает жаростойкость при высоких температурах.

В связи с определенным характером действия на титан различных легирующих элементов промышленные сплавы по типу структуры могут быть подразделены на три группы: титановые сплавы на основе
Tiα, сплавы на основе Tiβ и двухфазные (α+β)-титановые сплавы.

Промышленные титановые сплавы с (α+β)-структурой целесообразно подразделить на три группы: псевдо-α-сплавы с небольшим количеством β-фазы (Tiβ) со свойствами, близкими к α-сплавам (Tiα), типичные (α+β)-сплавы и псевдо-β-сплавы. Псевдо-β-сплавы представляют собой сплавы на основе Tiβ. В отожженном состоянии их физико-механические и технологические свойства типичны для β-сплавов, однако β-фаза у этих сплавов термически нестабильна.

По уровню характеристик прочности титановые сплавы классифицируют на высокопластичные и малопрочные, среднепрочные и высокопрочные, жаропрочные, коррозионностойкие.

По способности упрочняться с помощью термической обработки – на упрочняемые и не упрочняемые. По технологии производства – на деформируемые и литейные.

Деформируемые титановые сплавы с α-структурой характеризуются невысокой прочностью и не упрочняются при термической обработке. Они хорошо свариваются и имеют высокие механические свойства при криогенных температурах (ВТ5–1, ОТ4–0, ОТ4, ВТ20, ВТ18, ВТ–6, ВТ14, ВТ3–1, ВТ25 и др.).

Двухфазные (α+β)-сплавы характеризуются хорошим сочетанием механических и технологических свойств. По структуре после закалки в них образуется структура мартенситного типа. Увеличение количества β-фазы в сплавах переходного класса до 50 % обеспечивает им самую высокую прочность как в отожженном, так и в закалённом состояниях.

Однофазные β-сплавы имеют наиболее высокую коррозионную стойкость. Сплавы с β-структурой реже применяются в промышленности и их легируют ванадием, молибденом и ниобием.

Литейные титановые сплавы (ВТЛ1, ВТ14Л, ВТ5Л и др.) имеют небольшой температурный интервал кристаллизации, высокую жидкотекучесть и хорошую плотность отливки. Титановые сплавы этой категории склонны к поглощению газов, поэтому разливку надо проводить в вакууме или в среде нейтральных газов. Для получения отливок используют чугунные или стальные формы, а также оболочковые и керамические формы.

Для фасонного литья применяют сплавы, близкие по химическому составу некоторым деформируемым сплавам (ВТ5Л, ВТ14Л), а также специальные литейные сплавы.

Деление конструкционных титановых сплавов по типу структуры и характеристик прочности, их химический состав приведены в таблице15.1.

 

Таблица 15.1

 

Классификация промышленных титановых сплавов
и их механические свойства

Тип сплава Марка сплава Средний химический состав, % Уровень прочности Механич. свойства Технология получения
σВ, МПа δ, %
α-сплавы ВТ1–0 99,28 % Ti М.п.* 350–500 деформируемый
ВТ5 5 % А1 С.п. 750–900
ВТ5–1 5 % А1; 2,5 % Sn С.п. 750–900
ВТ5Л 5 % А1 М.п. 700–900 литейный
Псевдо-α-сплавы ОТ4–1 1,5 % А1; 1 % Мn М.п.. 600–750 деформируемый
АТ–2 2 % Zr; 1 % Мо М.п. 600–750
ВТ20 6 % А1; 1 % Мо; 1 %V С.п. 950–1150
ТС5 5 % А1; 2 % Zr; 3 %Sn; 2 % V В.п. 950–110
ВТ20Л 6 % А1; 2 % Zr; 1 % Мо С.п. ≥1000 ≤4 литейный
(α+β)-сплавы ВТ6С 5 % А1; 4 % V С.п. 850–1000 деформируемый
ВТЗ–1 6 % А1; 2,5 % Мо; 2 % Сr; 0,3 % Si; 0,5 % Fe В.п. 1000–1200
ВТ14 4,5 % А1; 3 % Мо; 1 % V В.п. 900–1070
ВТ22 5 % А1; 5 % Мо; 5 % V; 1 % (Fе, Сr) В.п. 1100–1250
ВТ14Л 5 % А1; 3 % Мо; 1 % V; 0,5 % (Cr, Fe) В.п. литейный
Псевдо-β-сплавы ВТ–15 3 %А1; 7 % Мо; 11 % Сr В.п. 1350–1500 деформируемый
ТС6 3 % А1; 5 % Мо; 6 %V–11 % Сr В.п. 1400–1500
β-сплавы 33 %Мо С.п. 800–850 деформируемый, коррозионност.

* – М.п. – малопрочные (высокопластичные), С.п. – среднепрочные,

В.п. – высокопрочные

Титановые сплавы подвергаются следующим видам термической обработки: отжигу для снятия напряжений, рекристаллизационному отжигу, упрочняющей термической и химико-термической обработке.

Упрочняющая термическая обработка (α+β)-сплавов состоит из закалки с температур нагрева до β- или (α+β)-области с последующим искусственным старением. После закалки образуется α’-фаза (мартенситная фаза) игольчатого строения, представляющая собой пересыщенный твердый раствор легирующих элементов в α-фазе. При старении из α’-фазы выделяется β-фаза, понижающая твердость сплава, или интерметаллидная фаза, вызывающая охрупчивание.

При закалке из β-области структура сплавов состоит из переохлажденного β’-твердого раствора. При старении из такого раствора выделяется мелкодисперсная α-фаза, повышающая прочность и твердость сплава.

Для повышения жаростойкости детали из титановых сплавов подвергают различным видам диффузионной металлизации, а для повышения износостойкости – азотированию.

 

15.2. Медь и её сплавы

 

Медь действительно цветной металл: в зависимости от чистоты и состояния поверхности цвет изменяется от розового до красного. Её порядковый номер 29, удельный вес 8,94 г/см3, кристаллическая решетка ГЦК с периодом 0,3608 нм. Медь плавится при температуре 1083 °С, не имеет полиморфных превращений, обладает высокой электропроводностью и теплопроводностью, высокими технологическими свойствами: хорошо паяется, сваривается, легко обрабатывается давлением. В отожженном состоянии предел прочности меди составляет 200–250 МПа при относительном удлинении 40–50 %. По ГОСТ 859-78 производится одиннадцать марок меди в зависимости от содержания примесей, например: М00 содержит 99,99 % Cu, М0 – 99,97 % Cu, М2 – 99,7 % Cu и т. д. Благодаря высокой электропроводности медь нашла широкое применение в электротехнике. Из меди изготавливают шины, ленты, кабели, обмотки электродвигателей и др. Примеси изменяют свойства меди. Понижают электропроводность примеси, которые образуют с медью твёрдые растворы: фосфор (Р), мышьяк (As), алюминий (Al), олово (Sn).

Высокая теплопроводность меди делает её пригодной для водоохлаждаемых тиглей, кристаллизаторов, поддонов и изложниц для отливки титана (Ti) и др.

На механические свойства меди примеси влияют незначительно, в большей мере они зависят от состояния (литое или деформированное). Для повышения прочности медь легируют цинком (Zn), алюминием (Al), оловом (Sn), никелем (Ni), железом (Fe) или подвергают холодной пластической деформации. В результате холодной пластической деформации медь наклёпывается и её временное сопротивление разрыву может достигать 400–450 МПа, при одновременном снижении пластичности и электропроводности на 2–4 %.

Восстановить пластичность меди можно рекристаллизационным отжигом при температуре 500–600 °С.

Медные сплавы по технологическим свойствам подразделяются на деформируемые (при получении листов, полос, профилей, проволоки) и литейные (при получении отливок в песчаные или металлические формы). По способности упрочняться в результате нагрева медные сплавы делятся на упрочняемые и не упрочняемые термической обработкой. По химическому составу более широко известно деление медных сплавов на латуни и бронзы.

В латунях главным легирующим элементом является цинк (Zn). Латуни получили широкое распространение благодаря сочетанию высоких механических и технологических свойств. Структура и свойства латуней определяется диаграммой состояния «Cu – Zn» (рис. 15.3).

 

Рис. 15.3. Диаграмма состояния системы «Cu – Zn»

 

Содержание цинка в кристаллической решетке может достигать 39 %. Латуни, состоящие из меди и цинка, называют простыми. Они могут быть однородными (до 39 % цинка) и двухфазными (более 39 % цинка). Однофазные латуни имеют высокую пластичность, т. к. состоят из однофазного α-твёрдого раствора. Двухфазные латуни при наличии β-фазы имеют более высокую прочность, но пластичность при этом снижается (рис. 15.4).

Простые латуни маркируются буквой «Л» и цифрой, показывающей процентное содержание меди. Латунь Л80 содержит 80 % меди и 20 % цинка. Простые латуни поставляются в виде листов, ленты, прутков, проволоки и согласно ГОСТ 15527-70 имеют обозначение Л96, Л90,…, Л59.

α
γ
δ, %
β+γ
β
α+β
δ
σB
Zn, %

Рис. 15.4. Влияние содержания цинка на свойства латуней

 

Специальные (многокомпонентные) латуни содержат и другие легирующие элементы: алюминий (Al), никель (Ni), марганец (Mn), олово (Sn) и др. Алюминий, кремний, марганец и никель повышают механические свойства латуни и сопротивление коррозии, а свинец улучшает обрабатываемость резанием. В специальных латунях после буквы «Л» следуют буквы русского алфавита, обозначающие легирующий элемент: А – Al, Н – Ni, К – Si, С – Pb, О – Sn, Ж – Fe, Mц – Мn, Ф – Р, Б – Ве, Ц – Zn. Цифры после букв показывают среднее содержание меди и легирующих элементов
в %. Например: ЛК 80–3 содержит 80 % меди, 3 % кремния, 17 % цинка.

Простые и специальные латуни относятся к деформируемым сплавам и используются как конструкционный материал там, где требуются высокая прочность и коррозионная стойкость: в трубопроводной арматуре, в химическом машиностроении и особенно в судостроении. Изготавливают из латуней листы, ленту, проволоку, а затем из этого проката – радиаторные трубки, снарядные гильзы, трубопроводы, шайбы, гайки, втулки, уплотнительные кольца, токопроводящие детали электрооборудования.

Кроме деформируемых латуней, применяются и литейные латуни, которые содержат большое количество добавок для улучшения литейных свойств. Их обозначение отличается от деформируемых латуней. В них содержание компонента указывается после буквы обозначения: ЛЦ40Мц3Ж – содержит 40 % Zn, 3 % Mn, 1 % Fe, остальное медь.

Механические свойства литейных латуней существенно зависят от способа получения отливок – песчано-глинистые формы, керамические или кокиль. Из литейных латуней изготавливают паровые и воздушные клапаны, корпуса кранов, пробки топливной и воздушной аппаратуры.

Бронзы – это сплавы меди со всеми другими элементами: оловом, алюминием, кремнием, бериллием и др. Бронзы различают по химическому составу и состоянию обработки. В некоторых случаях прочность таким способом может быть повышена до 750 МПа, по сравнению с обычной прочностью двухкомпонентных бронз – 400–500 МПа.

Бронзу называют по наличию легирующего элемента в её составе: алюминиевая, оловянистая, кремнистая, бериллиевая и т. д. Бронзы маркируют буквами «Бр» (бронза), за которыми следуют буквы и цифры, указывающие на состав и содержание в % легирующих элементов. Например:
Бр ОЦС 4–4–2,5 содержит 4 % олова, 4 % цинка, 2,5 % свинца, остальное медь; Бр КМц 3–1 содержит 3 % кремния, 1 % марганца, остальное медь.

Оловянистые бронзы известны с бронзового века. Они, как и другие сплавы, делятся на деформируемые (< 10 % Sn) и литейные (> 10 % Sn).
В прошлом бронзы получили название в зависимости от их назначения: колокольная (20–30 % олова), зеркальная (30–35 % олова), монетная
(4–10 % олова), пушечная (8–18 % олова). Оловянистые бронзы отличаются хорошими литейными свойствами – высокой жидкотекучестью и малой усадкой. С целью экономии олова в бронзы добавляют цинк в таком количестве, чтобы он полностью растворялся в меди, образуя твёрдый раствор, тем самым повышая механические свойства. Для улучшения обрабатываемости резанием в оловянистые бронзы добавляют свинец (например, БрО6Ц4С17: 6 % Sn, 4 % Zn, 17 % Pb, остальное Cu). Литейные оловянистые бронзы, обладающие высокой коррозионной стойкостью в воде и на воздухе, применяются для пароводяной арматуры.

Деформируемые оловянистые бронзы характеризуются более низким содержанием олова (например: Бр ОЦ4–3 содержит 4 % Sn, 3 % Zn, остальное медь) и имеют однофазную структуру твёрдого раствора. После холодной обработки давлением бронзы подвергаются отжигу при 600–700 °С. Они пластичны и более прочны, чем литейные. Кроме того, деформируемые оловянистые бронзы обладают высокими упругими свойствами, поэтому их используют для получения пружин, мембран и др.

Алюминиевые бронзы обычно содержат от 5 до 10 % алюминия. Механические и коррозионные свойства этих бронз выше, чем у оловянистых. Алюминиевые бронзы можно подвергать закалке и старению. Однофазные алюминиевые бронзы (Бр А7) более пластичны, чем двухфазные, и относятся к деформируемым. Они обладают высокой прочностью и пластичностью (σВ = 400–450 МПа, δ = 60 %).

Легируют алюминиевые бронзы железом, никелем, марганцем и др. для устранения литейных недостатков и увеличения механических свойств после упрочняющей термической обработки (закалки с последующим старением). Например, у бронзы Бр АЖН10–4–4 (10 % Al, 4 % Fe, 4 % Ni, остальное медь) твёрдость увеличивается от 1500 до 4000 НВ; из неё изготавливают седла клапанов, направляющие втулки, шестерни и др.

Кремнистые бронзы содержат до 3 % кремния и являются заменителями оловянистых бронз; для улучшения механических свойств их дополнительно легируют никелем и марганцем. Ввиду их высокой упругости и антикоррозионных свойств, эти бронзы применяются для изготовления упругих элементов различных механизмов. Из бронзы Бр КМц3–1 (3 % Si,
1 % Mn, остальное медь) изготавливают стопорные и упорные кольца насосов, мембраны датчиков давления.

Свинцовые бронзы обладают высокими антифрикционными свойствами, хорошей теплопроводностью (например, Бр С30), поэтому из них изготавливают вкладыши подшипников, работающих при больших давлениях и скоростях.

Бериллиевые бронзы содержат не более 2,5 % бериллия (например,
Бр Б2: 2% Be, остальное медь). Бериллий образует с медью твёрдый раствор переменной растворимости, и, следовательно, такие бронзы можно подвергать упрочняющей термической обработке (закалке от 780 °С с
последующим старением от 320 °С). После термической обработки повышаются как прочностные, так и упругие свойства: σВ = 1500 МПа, τУПР =
= 600–740 МПа. Бериллиевую бронзу применяют в виде пружин в часовых механизмах, электроаппаратуре, в качестве упругих контактов.


– Конец работы –

Эта тема принадлежит разделу:

МАТЕРИАЛОВЕДЕНИЕ

МАТЕРИАЛОВЕДЕНИЕ Учебник Под редакцией доктора технических наук профессора В С Кушнера... УДК... ББК я...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Титан и его сплавы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МАТЕРИАЛОВЕДЕНИЕ
  Учебник   Под редакцией доктора технических наук, профессора В. С. Кушнера     Допущено Учебно-методическим объединени

Строение сплавов
  Сплавы – важные вещества, получаемые сплавлением или спеканием двух или нескольких элементов периодической системы, называемых компонентами. Сплав считается металличес

Процесса кристаллизации
  Любое вещество может находиться в трех агрегатных состояниях – газообразном, жидком и твердом. Изменение агрегатного состояния происходит при определенных температурах. Температура

Процесса кристаллизации
  В жидком состоянии атомы вещества вследствие теплового движения перемещаются беспорядочно. В то же время в жидкости имеются группировки атомов небольшого объема, в пределах которых

Превращения в твердом состоянии. Полиморфизм
  Образование новых кристаллов в твердом кристаллическом веществе называется вторичной кристаллизацией. Многие металлы в зависимости от температуры могут существовать в разных

Механические свойства материалов
  Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе металла для изготовления деталей машин необходимо знать его м

Деформации и напряжения
  Напряжение – мера внутренних сил, возникающих в материале под влиянием внешних воздействий (нагрузок, изменения температуры и пр.). Для изучения напряжений через произвольную

Испытание материалов на растяжение и ударную вязкость
Испытания на растяжение относят к самым распространенным видам механических испытаний, при которых определяется прочность и пластичность материала. Результаты экспериментальных исследований механич

Определение твердости
Твердость – способность материала сопротивляться проникновению в него другого, более твердого, материала. Высокой твердостью должны обладать металлорежущие инструменты (резцы, сверла, фрезы

Упругая и пластическая деформации, разрушение
Любая деформация может осуществляться в твердых телах путем относительного смещения атомов. В твердых телах различают упругую деформацию (исчезающую после устранения воздействия, вызвавшего

Наклеп и рекристаллизация
  Как следует из диаграмм растяжения, при деформации сталей при комнатной температуре предел текучести увеличивается с ростом деформации, то есть материал в этих условиях упрочняется.

Правило фаз, построение диаграмм состояния
  Процесс кристаллизации металлических сплавов и связанные с ним многие закономерности строения сплавов описывают с помощью диаграмм фазового равновесия, которые в удобной граф

Химические соединения
  Данная диаграмма получается, когда сплавляемые компоненты образуют устойчивое химическое соединение АnВm , не диссоциирующее при нагреве впло

Тесты для контроля текущих знаний
  1. Металлы в твердом состоянии обладают рядом характерных свойств: 1) высокими теплопроводностью и электрической проводимостью в твердом состоянии; 2) увел

Железоуглеродистых сплавов
5. ДИАГРАММА «ЖЕЛЕЗО – УГЛЕРОД (ЦЕМЕНТИТ)» 5.1. Компоненты, фазы и структурные составляющие железоуглеродистых сплавов Железоуглеродистые сп

Изменения структуры сталей при охлаждении
  Большинство технологических операций (термическая обработка, обработка давлением и др.) проводят в твердом состоянии. Ниже рассматриваются превращения, протекающие в железоуглеродис

Изменение структуры чугунов при охлаждении
Железоуглеродистые сплавы с содержанием углерода более 2,14 % и имеющие в своей структуре цементит называются белыми чугунами. Рассмотрим превращение в чугунах (рис. 5.4).

ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ
  В машиностроительном производстве железоуглеродистые сплавы подразделяются на стали (содержание углерода от 0,02 до 2,14 %) и чугуны (содержание углерода от 2,14 до 6,67 %). Стали п

Влияние нагрева и скорости охлаждения углеродистой стали на ее структуру
  Термической обработкой называется технологический процесс, включающий нагрев стали до определенной температуры, выдержку при этой температуре и охлаждение с необходимой скоро

Отжиг углеродистых сталей
  Термическая обработка – самый распространенный в современной технике способ изменения свойств металлов и сплавов. Термообработку применяют как промежуточную операцию для улучшения т

ЗАКАЛКА И ОТПУСК УГЛЕРОДИСТЫХ СТАЛЕЙ
8.1. Закалка углеродистых сталей   Закалка – это процесс термической обработки, заключающийся в нагреве до

Тесты для контроля текущих знаний
  1. Твердый раствор внедрения углерода в Feα называется: 1) цементитом; 2) ферритом; 3) аустенитом; 4) ледебуритом.

Назначение легирования
В данном разделе рассматриваются примеси, вводимые в стали в определенных концентрациях с целью изменения их внутреннего строения и свойств. Такие примеси (элементы) называются легирующими (

И механические свойства сталей
  Полиморфные состояния железа при образовании твердых растворов введением легирующих элементов смещаются по температуре. Все легирующие элементы по влиянию на полиморфные состояния ж

Влияние легирования на превращения при термообработке
  1. При закалке (нагрев, выдержка, охлаждение со скоростью V>Vкр) углеродистых сталей из переохлажденного аустенита образуется мартенсит. Влияние легирующих элементов н

УПРОЧНЕНИЕ СПЛАВОВ
  Интерес к упрочнению материалов обусловлен стремлением к уменьшению их расхода, увеличению прочности, износостойкости, коррозионной стойкости деталей, сопротивления хрупкому разруше

Упрочнение легированием
  Формирование благоприятной структуры и надежность работы деталей обеспечивают рациональное легирование, измельчение зерна и повышение качества металла. Упрочнение при легир

Упрочнение пластическим деформированием
В результате холодной пластической деформации изменяются свойства металла: повышаются прочность, электросопротивление, снижаются пластичность, плотность, коррозионная стойкость. Это явление назы

Упрочнение термическими методами
Температурное воздействие на различные материалы с целью изменения их структуры и свойств является самым распространенным способом упрочнения в современной технике. Это воздействие может осущест

Цементация стали
  Цементацией называется процесс насыщения поверхностного слоя стали углеродом. Различают два основных вида цементации: твердую углеродосодержащую смесь (карбюризаторы) и газов

Азотирование стали
  Азотированием называют процесс диффузионного насыщения поверхностного слоя стали азотом при нагреве ее в аммиаке. Азотирование очень сильно повышает твердость поверхностного

Нитроцементация
  Процесс одновременного насыщения стали углеродом и азотом в газовой среде называется нитроцементацией. Нитроцементацию проводят при более низких (850–870 °С) по сравнению с ц

Поверхностное упрочнение
  Среди методов поверхностного упрочнения наибольшее распространение получили поверхностная закалка, обработка лазером и электроискровое легирование. При поверхностной закалке

Строительные стали
К строительным относятся конструкционные стали, применяемые для изготовления металлических конструкций и сооружений, для армирования железобетона. К низколегированным строительным сталям о

Цементуемые (нитроцементуемые) стали
К машиностроительным относят конструкционные стали, предназначенные для изготовления различных деталей машин, механизмов и отдельных видов машин. Для деталей и изделий находят применение дешевые уг

Улучшаемые стали
Для наиболее ответственных тяжелонагруженных деталей машин применяют легированные стали, подвергаемые улучшению, т. е. закалке с высоким отпуском. Эти стали содержат 0,3–0,5% С, 1–6% легирую

Износостойкие стали
К износостойким сталям относится сталь 110Г13Л (сталь Гадфильда). Эта сталь имеет следующий химический состав: 1,25 % углерода, 13 % марганца, 1 % хрома, 1 % никеля. Сталь Гадфильда при низкой нача

Рессорно-пружинные стали
Рессорно-пружинные стали предназначены для изготовления пружин, упругих элементов и рессор различного назначения. Основными требованиями, предъявляемыми к данным сталям, являются высокое сопротивле

Подшипниковые стали
В процессе работы детали подшипников (шарики, ролики, обоймы) испытывают высокие удельные знакопеременные нагрузки. Стали для подшипников должны обладать высокой твёрдостью и износостойкос

Автоматные стали
Обработка резанием – основной способ изготовления большинства деталей машин и приборов. Обрабатываемость стали зависит от ее механических свойств, теплопроводности, микроструктуры и химического сос

Коррозионная стойкость сталей и сплавов
Коррозия – это термин, используемый для обозначения широкого класса видов нежелательного повреждения металла в результате его химического или электрохимического взаимодействия с окруж

Коррозионностойкие стали
Коррозионностойкими (нержавеющими) называют металлы и сплавы, в которых процесс коррозии развивается с малой скоростью. Коррозионностойкие стали применяют для изготовления деталей машин и об

Жаропрочные стали и сплавы
  Жаропрочные стали и сплавы применяют для многих деталей котлов, газовых турбин, реактивных двигателей, ракет, атомных устройств и т. д., работающих при высоких температурах.

Жаростойкие стали и сплавы
  Жаростойкость – способность металла сопротивляться окислению в газовой среде или в других окислительных средах при повышенных температурах. Жаропрочные сплавы в принципе долж

Условия работы деформирующих и режущих инструментов, требования к инструментальным материалам
Условия работы деформирующих инструментов (штампов) различаются, прежде всего, тем, нагреваются ли предварительно заготовки или они деформируются в холодном состоянии. Штамповые инструмент

Инструментальные легированные (штамповые) стали
В качестве инструментальных материалов для горячего деформирования применяют легированные инструментальные стали (штамповые стали), которые условно можно разделить на три основные группы:

Режущие инструментальные и быстрорежущие стали
  Для режущих инструментов применяются высоколегированные быстрорежущие стали, а также, в небольших количествах, заэвтектоидные углеродистые стали с содержанием углерода 1,0–1, % и су

ТВЕРДЫЕ СПЛАВЫ
14.1. Классификация твердых сплавов и общая характеристика их свойств   Применение методов порошковой металлургии в начале 1920-х годов в Германии приве

Режущая керамика
  Среди исследовавшихся материалов, которые были бы пригодны для изготовления режущих инструментов, была окись алюминия Al2О3 – корунд. Корунд по своей природе –

Сверхтвердые инструментальные материалы
  Сверхтвердыми принято считать инструментальные материалы, имеющие твердость при комнатной температуре НV свыше 35 ГПа. Самый твердый материал на Земле, который издавна прим

Абразивные материалы
  При абразивной обработке применяются инструменты на жесткой основе (круги, сегменты, бруски), на гибкой основе (эластичные круги, шкурки, ленты), а также пасты и абразивные зерна. А

Тесты для контроля текущих знаний
1. Какая из сталей относится к автоматным: 1) 40А; 2) А12; 3) 08пс; 4) 18ХГТ.   2. Какая из сталей относится к подшипниковым:

Алюминий и его сплавы
  Алюминий – металл серебристо-белого цвета, имеет кристаллическую ГЦК решетку, температуру плавления 660 °С, удельный вес 2,7 г/см3, обладает высокой электропроводностью и

Магний и его сплавы
Магний – металл светло-серого цвета, обладающий наименьшим удельным весом среди металлов – 1,74 г/см3. Имеет гексагональную кристаллическую решетку. Температура плавления – 651°С. Несмот

Полимеры и пластмассы
Полимеры (от греческого polymeres – состоящий из многих частей, многообразный, от poly – много и meros – доля, часть) – соединения с высокой молекулярной массой, молекулы которых состоят из

Резиновые и клеящие материалы
Резиной (от латинского resina – смола) называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками (наполнители, пластификаторы, активаторы вулканизац

Стекло, ситаллы, графит
Стекло неорганическое – прозрачный (бесцветный или окрашенный) хрупкий материал, получаемый при остывании расплава, содержащего стеклообразующие компоненты (оксиды кремния, бора, алюминия, ф

Композиционные материалы
  Композиционными материалами, или композитами, называют материалы, состоящие из сильно различающихся по свойствам друг от друга, взаимно нерастворимых компонентов. Тр

Композиционные материалы с металлической матрицей
К этому виду композиционных материалов относятся материалы типа САП (спеченная алюминиевая пудра), которые представляют собой алюминий, упрочненный дисперсными частицами оксида алюминия. Алюминиевы

Композиционные материалы с неметаллической матрицей
Композиционные материалы с неметаллической матрицей нашли широкое применение в промышленности. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полим

Тесты для контроля текущих знаний
1. Титан имеет две полиморфические модификации. При какой температуре происходит полиморфное превращение? 1) 950 °С. 2) 882,5 °С. 3) 911 °С. 4) 768 °С.

Библиографический список
  1. Физическое металловедение: справ. Т. 1, 2, 3; под ред. У. Р. Кана

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги