рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Описание метода

Описание метода - раздел Психология, Экзамен по математические основы психологии Для Подсчета Ранговой Корреляции Необходимо Располагать Двумя Рядами Значений...

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений,

которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по

одному и тому же набору признаков (например, личностные профили по 16-факторному

опроснику Р. Б. Кеттелла, иерархии ценностей по методике Р. Рокича, последовательности

предпочтений в выборе из нескольких альтернатив и др.);

3) две групповые иерархии признаков;

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков. Как правило,

меньшему значению признака начисляется меньший ранг.

Рассмотрим случай 1 (два признака). Здесь ранжируются индивидуальные значения

по первому признаку, полученные 64025a0279разными испытуемыми, а затем индивидуальные

значения по второму признаку.

Если два признака связаны положительно, то испытуемые, имеющие низкие ранги

по одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие

высокие ранги по одному из признаков, будут иметь по другому признаку также высокие

ранги. Для подсчета rs необходимо определить разности (d) между рангами, полученными

данным испытуемым по обоим признакам. Затем эти показатели d определенным образом

преобразуются и вычитаются из 1. Чем меньше разности между рангами, тем больше

будет rs, тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не

будет никакого соответствия. Формула составлена так, что в этом случае rs, окажется

близким к 0.

В случае отрицательной корреляции низким рангам испытуемых по одному

признаку будут соответствовать высокие ранги по другому признаку, и наоборот.

Чем больше несовпадение между рангами испытуемых по двумя переменным, тем

ближе rs к -1.

Рассмотрим случай 2 (два индивидуальных профиля). Здесь ранжируются

индивидуальные значения, полученные каждым из 2-х испытуемым по определенному

(одинаковому для них обоих) набору признаков. Первый ранг получит признак с самым

низким значением; второй ранг - признак с более высоким значением и т.д. Очевидно, что

все признаки должны быть измерены в одних и тех же единицах, иначе ранжирование

невозможно. Например, невозможно проранжировать показатели по личностному

опроснику Кеттелла (16PF), если они выражены в "сырых" баллах, поскольку по разным

факторам диапазоны значений различны: от 0 до 13, от 0 до 20 и от 0 до 26. Мы не можем

сказать, какой из факторов будет занимать первое место по выраженности, пока не

приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны положительно, то

признаки, имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого,

и наоборот. Например, если у одного испытуемого фактор Е (доминантность) имеет

самый низкий ранг, то и у другого испытуемого он должен иметь низкий ранг, если у

одного испытуемого фактор С (эмоциональная устойчивость) имеет высший ранг, то и

другой испытуемый должен иметь по этому фактору высокий ранг и т.д.

Рассмотрим случай 3 (два групповых профиля). Здесь ранжируются

среднегрупповые значения, полученные в 2-х группах испытуемых по определенному,

одинаковому для двух групп, набору признаков. В дальнейшем линия рассуждений такая

же, как и в предыдущих двух случаях.

Рассмотрим случай 4 (индивидуальный и групповой профили). Здесь ранжируются

отдельно индивидуальные значения испытуемого и среднегрупповые значения по тому же

набору признаков, которые получены, как правило, при исключении этого отдельного

испытуемого - он не участвует в среднегрупповом профиле, с которым будет

сопоставляться его индивидуальный профиль. Ранговая корреляция позволит проверить,

насколько согласованы индивидуальный и групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции

определяется по количеству ранжированных значений N. В первом случае это количество

будет совпадать с объемом выборки п. Во втором случае количеством наблюдений будет

количество признаков, составляющих иерархию. В ヌニナハハハノハハヒтретьем и четвертом случае N - это

также количество сопоставляемых признаков, а не количество испытуемых в группах.

Подробные пояснения даны в примерах.

Если абсолютная величина rs достигает критического значения или превышает его,

корреляция достоверна.

– Конец работы –

Эта тема принадлежит разделу:

Экзамен по математические основы психологии

Переменные и их измерения Квантили и процентили Величина... Фоновые рисунки... В ячейки таблицы разрешается добавлять фоновый рисунок в зависимости от размеров ячейки он может повторяться по...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Описание метода

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие измерения в психологии.
Главное отличие отраслей психологического знания использующих математические методы – их предмет может быть не только описан, но и измерен. Возможность измерения открывает доступ для применения кол

Измерительные шкалы. Характеристика номинальной шкалы.
Состоит в присваивании какому-либо свойству или признаку определенного обозначения или символа. При измерении в этой шкале осуществляется классификация или распределение на непересекающиеся классы.

Измерительные шкалы. Характеристика порядковой шкалы.
Классифицирует совокупность измеренных признаков по принципу «больше-меньше», «выше-ниже», «сильнее-слабее». Примеры Школьные оценки от 1 до 5; закодированные уровни от низкого до

Измерительные шкалы. Характеристика интервальной шкалы.
Каждое из возможных значений измеренных величин отстоит от ближайшего на равном расстоянии. Нуль условен. Для измерения с помощью шкалы интервалов устанавливаются специальные единицы измер

Измерительные шкалы. Шкалы отношений.
Обладает всеми свойствами интервальной шкалы и имеет твердо фиксированный нуль, который означает полное отсутствие свойства. Используется в химии, физике, психофизике, психофизиологии. При

Квантили и процентили.
Квантиль – это такое значение признака q, которое делит диапазон его изменения на две части так, чтобы отношение числа элементов выборки, имеющих значение признака, меньшее q, к числу элементов, им

Таблицы и графики. Преимущества и недостатки.
Преимущества таблиц Таблицы довольно долго властвовали в области верстки, поскольку предлагали достаточно простые методы для размещения разных элементов на веб-странице при отсутствии явны

Создание колонок
Таблицы же хорошо выступают в качестве многоколонной модульной сетки, каждая ячейка представляет собой отдельную колонку. Это позволяет легко создавать двух- и трехколонный макет документа. При изм

Понятие корреляции
Корреляция – это согласованное изменение признаков. Если при изменении одной (или нескольких) величин изменяются другая (другие), то между показателями этих явлений будет наблюдаться корреляция. На

Графическое представление метода ранговой корреляции
Чаще всего корреляционную связь представляют графически в виде облака точек или в виде линий, отражающих общую тенденцию размещения точек в пространстве двух осей: оси признака А

Ограничения коэффициента ранговой корреляции
1. По каждой переменной должно быть представлено не менее 5 наблюдений. Верхняя граница выборки определяется имеющимися таблицами критических значений (Табл.XVI Приложения 1), а и

Расчет коэффициента ранговой корреляции Спирмена rs.
1. Определить, какие два признака или две иерархии признаков будут участвовать в сопоставлении как переменные А и В. 2. Проранжировать значения переменной А, начисляя ранг 1 наиме

Статистические гипотезы
Формулирование гипотез систематизирует предположения исследователя и представляет их в четком и лаконичном виде. Благодаря гипотезам исследователь не теряет путеводной нити в проц

Ненаправленные гипотезы
H0: X1 не отличается от Х2 Н1: Х1 отличается от Х2 Если вы заметили, что в одной из групп индивидуальные значения испытуемых по какому-либо признаку, например по социальн

Статистические критерии различий
В психологических исследованиях для доказательства эффективности внедряемых программ, тренингов, упражнений и т.д. помимо отслеживания на определенных этапах качественных изменений используется и м

Статистические критерии
Статистический критерий - это решающее правило, обеспечивающее надежное поведение, то есть принятие истинной и отклонение ложной гипотезы с высокой вероятностью. Статисти

Уровни статистической значимости
Уровень значимости - это вероятность того, что мы сочли различия существенными, а они на самом деле случайны. Когда мы указываем, что различия достоверны на 5%-ом уровне значимост

Ошибка, состоящая в том, что мы отклонили нулевую гипотезу, в то время какона верна, называется ошибкой 1 рода.
Вероятность такой ошибки обычно обозначается какα. В сущности, мы должны были бы указывать в скобках не р≤0,05 или р≤0,01, а α≤0,05 или α≤0,01. В нек

Ошибка, состоящая в том, что мы приняли нулевую гипотезу, в то время как
она неверна, называется ошибкой II рода. Вероятность такой ошибки обозначается как β. Мощность критерия - это его способность не допустить ошибку II рода, поэтому:

Выборка
Выборка – любая подгруппа элементов (испытуемых, респондентов) выделенная из генеральной совокупности для проведения эксперимента. Генеральная совокупность – это люб

КРИТЕРИИ
1). Позволяют прямо оценить различи* в средних, полученных в двух выборках (t - критерий Стьюдента).2)Позволяют оценить лишь средние тенденции, например, ответить на вопрос, чаще ли в выборке А вст

Критерий фишера.
Назначение.Критерий j-Фишера – многофункциональный и предназначен для сравнения двух как связных, так и несвязных между собой выборок, причем в сравниваемых выбор

Описание критерия
Критерий оценивает достоверность различий между процентными долями двух выборок, в которых зарегистрирован интересующий нас эффект. Суть углового преобразования Фишера состоит в п

Гипотезы
H0: Доля лиц, у которых проявляется исследуемый эффект, в выборке 1 не больше, чем в выборке 2. H1: Доля лиц, у которых проявляется исследуемый эффект, в выборке 1 больше,

АЛГОРИТМ 17
Расчет критерия φ* 1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого "есть эффект" и тех, у кого

Описание критерия
Существует несколько способов использования критерия и несколько вариантов таблиц критических значений, соответствующих этим способам. Этот метод определяет, достаточно ли мала зо

Графическое представление критерия U
На Рис. 2.5. представлены три из множества возможных вариантов соотношения двух рядов значений. В варианте (а) второй ряд ниже первого, и ряды почти не перекрещиваются. Область

Ограничения критерия U
1. В каждой выборке должно быть не менее 3 наблюдений: n1•n2≥3; допускается, чтобы в одной выборке было 2 наблюдения, но тогда во второй их должно быть не менее 5.

Правила ранжирования
1. Меньшему значению начисляется меньший ранг. Наименьшему значению начисляется ранг 1. Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых знач

Подсчет критерия U Манна-Уитни.
1. Перенести все данные испытуемых на индивидуальные карточки. 2. Пометить карточки испытуемых выборки 1 одним цветом, скажем красным, а все карточки из выборки 2 - другим, наприм

Описание критерия Т
Этот критерий применим в тех случаях, когда признаки измерены по крайней мере по шкале порядка; и сдвиги между вторым и первым замерами тоже могут быть упорядочены. Для этого они

Графическое представление критерия Т
Сдвиги в противоположные стороны мы можем представить себе в виде двух облаков, как и в критерии знаков. Величина облака зависит не только от количества соответствующих сдвигов, н

Ограничения в врнменеанн критерия Т Ввлкоксона
1. Минимальное количество испытуемых, прошедших измерения в двух условиях - 5 человек. Максимальное количество испытуемых - 50 человек, что диктуется верхней границей имеющихся та

Подсчет критерия Т Вилкоксона
1. Составить список испытуемых в любом порядке, например, алфавит- ном. 2. Вычислить разность между индивидуальными значениями во втором и первом замерах ("после&quo

Понятие дисперсионного анализа
Дисперсионный анализ - это анализ изменчивости признака под влиянием каких- либо контролируемых переменных факторов. В зарубежной литературе дисперсионный анализ часто обозначаетс

Нию (б) у учеников с низким, средним и высоким уровнями развития кратковременной памяти
Низкий, средний и высокий уровни развития кратковременной памяти можно рассматривать как градации фактора кратковременной памяти. Нулевая гипотеза в дисперсионном анализе б

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги