рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Этапы развития ЭВМ

Этапы развития ЭВМ - раздел Компьютеры, Организация ЭВМ и систем Идея Использования Программного Управления Для По­строения Устройств, Автомат...

Идея использования программного управления для по­строения устройств, автоматически выполняющих арифмети­ческие вычисления, была впервые высказана английским мате­матиком Ч. Бэббиджем в 1833 г. Однако его попытки построить механическое вычислительное устройство с про­граммным управлением не увенчались успехом.

Фактически эта идея была реализована спустя более чем 100 лет, когда в 1942 г. К. Цюзе в Германии и в 1944 г. Г. Айкен в США построили вычислительные машины на электромагнитных реле с управлением от перфоленты, на которую записывалась программа вычислений.

Идея программного управления вычислительным процес­сом была существенно развита американским математиком Джорджем фон Нейманом, который в 1945 г. сформулировал принцип хранимой в памяти программы. Первые ЭВМ с программным управлением и с хранимой в памяти программой появились практически одновременно в Англии, США и СССР.

На протяжении более шести десятилетий электронная вычис­лительная техника бурно развивается. Появи­лись, сменяя друг друга, несколько поколений ЭВМ. Появление новых поколений ЭВМ вызывалось расширением областей и развитием методов их применения, требовавших более производительных, более дешевых и более надежных машин.

Поколение ЭВМ определяется совокупностью взаимосвя­занных и взаимообусловленных существенных особенностей и характеристик, используемых при построении машин, кон­структивно-технологической (в первую очередь элементной) базы и реализуемой в машине архитектуры.

Первое поколение образовали ламповые ЭВМ, промыш­ленный выпуск которых начался в начале 50-х гг. В качестве компонентов логических элементов использовались элек­тронные лампы. ЭВМ этого поколения характеризовались низкой надежностью и высокой стоимостью. Их быстродействие составляло всего 5 ¸ 8 тыс. опер/с.

Второе поколение ЭВМ появилось в конце 50-х годов. Элементной базой второго поколения ЭВМ были полупроводниковые приборы, благодаря чему повысилась их надежность, а производительность возросла до 30 тыс. опер/с. В рамках ЭВМ 2-го поколения академик Лебедев С.А. создал ЭВМ БЭСМ-6 с производительностью до 1 млн. опер/с.

С середины 60-х годов отсчитывается начало появления ЭВМ 3-го поколения. Их элементной базой стали интегральные микросхемы (ИМС). В рамках этого поколения фирма IBM создала систему машин IBM-360, в которых был использован ряд новых достижений в области вычислительной техники. Машины серии IBM-360, а затем и IBM-370, получили широкое распространение в мире. К этому времени в Пензенском научно- исследовательском институте математических машин (ныне АО “Рубин”) была разработана ЭВМ примерно такого же класса - Урал-16, однако заметное отставание СССР в области элементной базы не могло не сказаться на характеристиках отечественных ЭВМ. Поэтому правительством было принято решение о переходе на производство техники, разработанной фирмой IBM. В СССР она выпускалась под названием Единая Система ЭВМ (EC ЭВМ). Наиболее быстродействующая ЭВМ из этого ряда- ЕС 1065 выпускалась заводом ВЭМ (г. Пенза). Она выполняла до 5 млн. опер/ с.

Конструктивно-технологической основой ЭВМ четвертого поколения являются большие (БИС) и сверхбольшие (СБИС) ИМС.

К четвертому поколению относятся реализованные на СБИС такие новые средства вычислительной техники, как ми­кропроцессоры и создаваемые на их основе микро-ЭВМ и микропроцессорные контроллеры. Ми­кропроцессоры и микро-ЭВМ нашли широкое применение в устройствах и системах автоматизации измерений, обработки данных и управления технологическими процессами, при по­строении различных специализированных цифровых устройств и машин.

Вычислительные возможности микро-ЭВМ оказались доста­точными для создания на их основе в рамках ЭВМ четвертого поколения, нового по ряду эксплуатационных характеристик и способу использования типа вычислительных устройств - персональных компьютеров (ПК), получивших в настоящее время широкое распространение.

К четвертому поколению относятся также многопроцессорные вычислительные системы, имеющие быстродействие в несколько сотен миллионов, или даже миллиард операций в секунду. К этому же поколению относятся управляющие комплексы на их основе с по­вышенной живучестью и надежностью, получаемых путем автоматической реконфигурации при выходе из строя одного или нескольких процессоров или других устройств.

Примером ранних отечественных вычислительных систем, которые сле­дует отнести к четвертому поколению, является многопроцес­сорный комплекс «Эльбрус-2» с суммарным быстродействием до 100 млн. опер/с. В центральном процессоре комплекса была реализована нетрадиционная система команд, приближенная к языкам высокого уровня. Представление программ осуществлялось в виде обратной польской записи. Для обработки программ применялся магазинный (стековый) механизм организации вычислений и обращений к памяти программ и данных.

В 90-е годы прошлого века определились контуры нового, пятого поколения ЭВМ. В значительной степени этому способствовали публикации сведений о проекте ЭВМ пятого поколения ведущих японских фирм, поставившими перед собой цель захвата в 90-х го­дах японской промышленностью мирового лидерства в обла­сти вычислительной техники. Поэтому этот проект часто называют “японским вызовом”. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения, помимо более высокой производительности и надежности при более низкой стоимости, должны обладать качественно новыми свойствами. В первую очередь к ним относятся возможность взаимодействия с ЭВМ при помощи чело­веческой речи и графических изображений, способность си­стемы обучаться, производить ассоциативную обработку ин­формации, делать логические суждения, вести “разумную” беседу с человеком в форме вопросов и ответов. Вычислительные системы пятого поколения должны также “понимать” содержимое базы данных, которая при этом превращается в “базу знаний”, и использовать эти “зна­ния” при решении задач. В настоящее время исследования по подобным проблемам ведутся и в России.

 

– Конец работы –

Эта тема принадлежит разделу:

Организация ЭВМ и систем

Содержание... ОБЩИЕ СВЕДЕНИЯ О ЭВМ Этапы развития ЭВМ Характеристики ЭВМ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Этапы развития ЭВМ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Характеристики ЭВМ
Важнейшими характеристиками ЭВМ являются быстродействие и производительность. Эти характеристики тесно связаны. Быстродействие характеризуется числом команд, выполняемых ЭВМ за одну секунду. Быстро

Обобщенная структура ЭВМ
  Обобщенная структура ЭВМ приведена на рисунке 1.4.1. В состав ЭВМ входят: запоминающие устройства (ЗУ), процессор, устройства ввода и вывода (УВВ). Процессор предназначен д

Структура ЭВМ на основе общей шины
  При организации ЭВМ на основе общей шины (ОШ) взаимодействие между ее устройствами осуществляется через общую шину, к которой подключены все устройства, входящие в состав ЭВМ.

Структура ЭВМ на основе множества шин
По такому принципу построены современные компьютеры. На рисунке 1.4.3.1 показана 2-х шинная структура ЭВМ, в которой выделена одна шина для памяти, а вторая шина используется для подключения устрой

Принцип программного управления
Принцип программного управления заключается в том, что алгоритм вычислений (например, вычисление некоторого выражения) представляется в виде упорядоченной последовательности команд, преобразующих и

Принцип хранимой в памяти программы
Принцип хранимой в памяти программы был предложен Дж. фон Нейманом в 1945 году. Этот принцип стал основой современных машин. В соответствии с этим принципом команды хранятся в памяти, также как и д

Обобщенный формат команд
Команды в ЦВМ могут быть одноадресными, двухадресными и трехадресными (в машинах с так называемой естественной адресацией команд). Формат одноадресной команды следующий:

Процессоры с принудительным порядком выполнения команд
Упрощенная структура процессора с принудительной адресацией команд приведена на рисунке 2.4.1. Рису

Процессоры с естественной адресацией команд
Упрощенная структура процессора с естественной адресацией команд приведена на рисунке 2.4.2. Рисуно

Прямая адресация
    При прямой адресации

Регистровая адресация
    Регистровая адресация

Косвенная адресация
  При косвенной адресации в адресной части команды указывается адрес ячейки памяти, в которой находится адрес операнда (косвенная адресация - это адресация адреса). Косвенный

Непосредственная адресация
В поле адреса команды находится не адрес, а сам операнд. В отличие от других типов адресации, при выполнении команд с непосредственной адресацией отсутствует дополнительный цикл обращения в память

Относительная (базовая) адресация
Адрес операнда определяется как сумма содержимого адресного поля команды и некоторого числа, называемого базовым адресом. Базовый адрес является косвенным. Для указания его адреса в команде предусм

Индексная (автоинкрементная или автодекрементная) адресация
При обработке больших массивов данных, выбираемых последовательно друг за другом, нет смысла каждый раз обращаться в память за новым адресом.Для этого достаточно автоматически менять содержимое спе

ОЗУ с произвольным доступом
  В оперативных ЗУ с произвольным доступом (Random Access Memory - RAM) запись или чтение осуществляется по адресу, указанному регистром адреса (РА). Информация, необходимая дл

Организация динамической памяти
Структура микросхем динамической памяти (DRAM) в целом близка к структуре микросхем статической памяти. Однако для уменьшения количества выводов в микросхемах динамической памяти используетс

Особенности микросхем синхронной динамической памяти
Описанная динамическая память управляется в асинхронном ре­жиме. Она тактируется только управляющими сигналами RAS и CAS и момент готовности микросхемы к обмену информацией с процессо

Основные характеристики ЗУ
1. Емкость памяти. Является важнейшей характеристикой ЗУ любого типа. Она определяет максимальное количество информации, которое может в ней храниться. Емкость может измеряться в битах, байтах или

ОЗУ магазинного типа (стековая память)
  Cтековая память широко используется в ЭВМ для запоминания содержимого регистров процессора (контекста прерываемой программы), при обработке запросов на прерывания и вызове подпрогра

Ассоциативные ЗУ
Всовременных вычислительных системах широкоиспользуются операция поиска информации. При использовании обычной памяти с адресным принципом доступа к данным эта операция занимает много времени, поско

Обобщенные структуры процессоров с непосредственными и магистральными связями
Основными функциями процессора являются: - организация обращений в ОП за командами и операндами; - дешифрация и выполнение команд; - инициация работы периферийных устройс

Декомпозиция процессора на УА и ОУ
Основу процессора составляют устройство управления (УУ) и арифметическое устройство (арифметико-логическое устройство- АЛУ) (см. рисунок 4.2). Устройство управления реализует функции управления ход

АЛУ для сложения и вычитания чисел с фиксированной запятой
Операция сложения в АЛУ обычно сводится к арифметическому сложению кодов чисел путём применения инверсных кодов - дополнительного или обратного для представления отрицательных чисел. Обратный код и

Методы ускорения умножения
Методы ускорения умножения делятся на аппаратурные и логические. Как те, так и другие требуют дополнительных затрат оборудования. При использовании аппаратурных методов дополнительные затраты обору

Особенности операций десятичной арифметики
Арифметические операции над десятичными числами (сло­жение, вычитание, умножение, деление) выполняются аналогич­но операциям над целыми двоичными числами. Основой АЛУ десятичной арифметики является

Аппаратные УУ
Управляющие устройства с жесткой логикой представляют собой логические схемы, вырабатывающие распределенные во времени управляющие сигналы. В отличие от управляющих устройств с хранимой в памяти ло

Микропрограммные УУ
Альтернативой аппаратного способа реализации УУ является микро­программное управление, согласно которому сигналы генерируются программой, подобной программе, написанной на машинном языке для ЭВМ. Э

Рабочий цикл процессора
Функционирование процессора состоит из повторяющихся рабочих циклов, каждый из которых соответствует выполнению либо целой команды, либо её части. Завершив рабочий цикл процессор переходит к выполн

Понятие о слове состояния процессора
В ходе функционирования процессора постоянно меняется состояние его внутренних регистров. Сигнал “Запрос на прерывание”, а также команда “Вызов подпрограммы” приводят к прекращению выполнения основ

Процедура выполнения команд перехода (условного и безусловного)
При естественной адресации адрес следующей команды получается из адреса выполняемой команды увеличением его на шаг адресации (1, 2, 4 и т.д. в зависимости от количества байт в команде). Производитс

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги