рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дифференциальные уравнения первого порядка

Дифференциальные уравнения первого порядка - Лекция, раздел Математика, Раздел 2. Дифференциальное исчисление. Дифференциальные уравнения. Ряды Определение 1.Уравнение Вида F(X, Y, Y')=0, Где Х — ...

Определение 1.Уравнение вида F(x, y, y')=0, где х независимая переменная; у искомая функция; у' ее производная, называется дифференциальным уравнением первого порядка.

Если уравнение можно разрешить относительно у', то оно принимает вид: y' = f(x,y) и называется уравнением первого порядка, разрешенным относи­тельно производной.

Дифференциальное уравнение удобно записать в виде: , являющемся част­ным случаем более общего уравнения (в симметрической форме): P(x,y)dx+Q(x,y)dy =0, где Р(х, у) и Q (х, у) — известные функции.

Уравнение в симмет­ричной форме удобно тем, что переменные х и у в нем равно­правны, т.е. каждую из них можно рассматривать как функцию от другой.

Определение 2.Решением дифференциального уравнения первого порядка называется функция у=j(х), которая при подстановке в уравнение обра­щает его в тождество.

График решения дифференциального уравнения называется интегральной кривой.

Ответ на вопрос о том, при каких условиях уравнение имеет решение, дает теорема Коши, которая называется теоремой о суще­ствовании и единственности решения дифференциального уравне­ния и является основной в теории дифференциальных уравнений.

Теорема(теорема Коши). Если функция f (x, у) и ее частная производная f'y (x, у) определены и непрерывны в неко­торой области G плоскости Оху, то какова бы ни была внутренняя точка (х0; у0) области G, в некоторой окрестности этой точки су­ществует единственное решение уравнения y'=f(x, у), удовлетво­ряющее условиям: у=уо при х=х0.

Теорема Коши дает возможность по виду дифференциального уравнения решать вопрос о существовании и единственности его решения. Это особенно важно в тех случаях, когда заранее не­известно, имеет ли данное уравнение решение.

Геометрически теорема утверждает, что через каждую внутрен­нюю точку (x0; у0) области G проходит единственная интегральная кривая. Очевидно, что в области G уравнение имеет бесконеч­ное число различных решений.

Условия, в силу которых функция у=j(х) принимает за­данное значение у0 в заданной точке х0, называют начальными усло­виями решения.

Отыскание решения уравнения, удовлетворяющего началь­ным условиям, — одна из важнейших задач теории дифферен­циальных уравнений. Эта задача называется задачей Коши.

С гео­метрической точки зрения решить задачу Коши — значит из мно­жества интегральных кривых выделить ту, которая проходит через заданную точку (х0; у0) плоскости Оху.

Точки плоскости, через которые либо проходит более одной ин­тегральной кривой, либо не проходит ни одной интегральной кри­вой, называются особыми точками данного уравнения.

Определение 3.Общим решением уравнения в некоторой области G плоскости Оху называется функция у=j(х, С), завися­щая от х и произвольной постоянной С, если она является решени­ем уравнения при любом значении постоянной С, и если при любых начальных условиях таких, что 0; у0G, существует единственное значение постоянной С=С0 такое, что функция у=j(х, С0) удовлетворяет данным начальным условиям j0, С)=С0.

Определение 4.Частным решением уравнения в области G называется функция у=j(х, С0), которая получается из общего решения у=у(х, С) при определенном значении постоянной С=С0.

Геометрически общее решение представляет собой семейство интегральных кривых на плоскости Оху, зависящее от одной произвольной постоянной С, а частное решение — одну интегральную кривую этого семейства, проходящую через заданную точку (х0; у0).

Иногда начальные условия называют условиями Коши, а частным решением называют решение какой-нибудь задачи Коши.

 

Геометрический смысл уравнения. Пусть дано дифференциаль­ное уравнение первого порядка y'=f(x, у) и пусть функция у=j(х) - его решение. График решения представляет собой непрерывную интегральную кривую, через каждую точку которой можно провести касательную. Из уравнения следует, что угловой коэффициент у' касательной к интегральной кривой в каждой ее точке (х; у) равен значению в этой точке правой части уравнения f(x, у). Таким образом, уравнение y' = f(x, у) устанавливает за­висимость между координатами точки (х; у) и угловым коэффициен­том у' касательной к графику интегральной кривой в той же точке. Зная х и у, можно указать направление касательной к этой интег­ральной кривой в точке (х; у). Сопоставим каждой точке (х; у) интегральной кривой направ­ленный отрезок, угловой коэффициент которого равен f(х, у). По­лучим так называемое поле направлений данного уравнения, рас­крывающее геометрический смысл дифференциального уравнения первого порядка.

Итак, с геометрической точки зрения уравнение y'=f(x, у) определяет на плоскости Оху поле направлений, а решение этого уравнения — интегральная кривая, направление касательной к которой в каждой точке совпадает с направлением поля в этой точке.

Построив на плоскости поле направлений данного дифферен­циального уравнения, можно приближенно построить интеграль­ные кривые.

 

– Конец работы –

Эта тема принадлежит разделу:

Раздел 2. Дифференциальное исчисление. Дифференциальные уравнения. Ряды

Тема Интегралы... Лекция Первообразная и неопредел нный интеграл...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дифференциальные уравнения первого порядка

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Первообразная
  Восстановление функции по известной производной этой функции составляет одну из основных задач интегрального исчисления.   Определение 1:

Неопределённый интеграл.
Определение 1:Если функция F(x) — первообразная для функции f(x), то множество функций F(x)+C, где С — произвольн

Свойства неопределённого интеграла.
  Свойство 1:Производная неопределённого интеграла равна подынтегральной функции; дифференциал от неопределённого интеграла равен подынтегральному выражени

Основные методы интегрирования.
1) Непосредственное интегрирование; 2) Метод подстановки; 3) Метод интегрирования по частям.   1) Непосредственное интегрирование.

Основные свойства неопределённого интеграла.
Производная неопределённого интеграла равна подынтегрально

Основные методы интегрирования.
Непосредственное интегрирование Вычисление интегралов с помощью таблицы простейших интегралов и основных свойств неопределённых интегралов. Метод

Основные свойства определённого интеграла.
Если а=b, то Если а>b, то

Интегрирование рациональных функций.
Интегралы от рациональных функций всегда выражаются через элементарные функции. Задача интегрирования рациональной функции сводится к нахождению интегралов следующих четырёх типов:

Интегрирование некоторых тригонометрических выражений.
· Для нечётных степеней sinx или cosx применимо правило: Правило 1: Для вычисления интегралов вида:

Некоторые интегралы, зависящие от радикалов.
Символ R(x; y) здесь и в дальнейшем обозначает дробь, числитель и знаменатель которой – многочлены относительно букв х, у. Такая дробь называется рациональной фун

Подстановки Эйлера.
Интегралы вида: рационализируются одной из подстановок Эйлера:

Определённый интеграл.
Пусть функция y=f(x) определена на отрезке [а, b], а<b. Разобьем этот отрезок на n произвольных частей точками а=x0<x1

Основные свойства определённого интеграла.
· Если а=b, то ; · Если а>b, то

Формула Ньютона Лейбница.
Теорема (Основная теорема интегрального исчисления):Пусть функция f(x) непрерывна на отрезке [а, b]. Тогда, если функция F(x) является некоторой

Несобственные интегралы.
Определение 1: Определённый интеграл , где промежуток интег

Интеграл с бесконечным промежутком интегрирования
(несобственный интеграл I рода) Пусть функция f(x) непрерывна на промежутке [а, +¥). Если существует конечный предел

Интеграл функции, имеющей разрыв
(несобственный интеграл II рода) Пусть функция f(x) имеет разрыв в точке х=b, а остальных точках этого промежутка (а; b) она непр

Понятие числового ряда.
Пусть дана числовая последователь­ность а1, а2, а3, ..., аn, ... Выражение вида

Свойства сходящихся рядов.
· Если сходится ряд: , то сходится и ряд:

Достаточные признаки сходимости положительных рядов
Необходимое и достаточное условие сходимости положительного ряда:Для того чтобы ряд

Знакопеременный ряд. Признак Лейбница
Ряд называется знакопеременным, если его члены поочерёдно положительны и отрицательны:

Абсолютная и условная сходимость
Ряд (1) (с членами произвольных знаков) заведомо сходится, если сходится положительный

Ответ: ряд сходится.
· Применим признак сравнения: Сравним данный ряд с

Степенной ряд.
Сте­ленным рядом называется ряд вида (1): ао+а1х+а2х2+...+апхп+..., а также ряд более общего вида (2): а

Промежуток и радиус сходимости степенного ряда, расположенного по степеням х
  Теорема 1. Область сходимости степенного ряда есть некоторый промежуток (-R, R), симметричный относительно точки х=0. Иногда в него надо

Промежуток и радиус сходимости степенного ряда, расположенного по степеням х-а
Теорема 1. Область сходимости степенного ряда, расположенногопо степеням х-а есть некоторый промежуток (а-R, а+R), симметричный относитель

Разложение функций в степенной ряд
Разложить функцию f(x) в степенной ряд, расположенный по степеням х - х0 – это значит составить ряд, у которого радиус сходимости не равен нулю, а сумма тождественно равна данной

Лекция 5
  §94 Линейное ДУ I порядка (ЛДУ I) Пусть ДУ I имеет вид: Мdx+Ndy=0 – оно называется ЛДУ I, если отношение M/N сод

Метод Бернулли.
Решение уравнения у¢+Р(x)у=Q(x) ищется в виде произведения двух других функций, то есть с помощью подстановки y=u·v, где u(x) и v(x) – неизвестные функции от х, причём одна из них произвольна,

Метод Лагранжа (метод вариации постоянной).
Решение уравнения у¢+Р(x)у=Q(x) ищется в следующей последовательности: Составим вспомогательное ЛОДУ I у¢+Р(x)у=0 и решим его как уравнение с разделяющимися переменными. То есть

ЛОДУ II с постоянными коэффициентами.
  ау²+bу¢+cу=0, где а, b, c – некоторые постоянные. Составим характеристическое уравнение аk2+bk+

ЛНДУ II с постоянными коэффициентами.
  ау²+bу¢+cу=R(x), где а, b, c – некоторые постоянные. Его общее решение имеет вид:

Свойства сходящихся рядов.
· Если сходится ряд: , то сходится и ряд:

Достаточные признаки сходимости положительных рядов
Необходимое и достаточное условие сходимости положительного ряда:Для того чтобы ряд

Знакопеременный ряд. Признак Лейбница
Ряд называется знакопеременным, если его члены поочерёдно положительны и отрицательны:

Степенной ряд.
Степенным рядом называется ряд вида (1): ао+а1х+а2х2+...+апхп+..., а также ряд более общего вида (2): а

Расположенного по степеням х
  Теорема Область сходимости степенного ряда, расположенного по степеням х есть (-R, R), симметричный относительно точки х=0. Иногд

Расположенного по степеням х-а
  Теорема Область сходимости степенного ряда, расположенного по степеням х-а есть некоторый промежуток (-R+а R+а), симметричный отн

Дифференциальные уравнения первого порядка
Уравнение вида F(x, y, y')=0, где х — независимая переменная; у — искомая функция; у' — её производная, называется дифференциальным уравнением первого порядка.

Метод Бернулли.
Решение уравнения у¢+Р(x)у=Q(x) ищется в виде произведения двух других функций, то есть с помощью подстановки y=u·v, где u

Метод Лагранжа (метод вариации постоянной).
Решение уравнения у¢+Р(x)у=Q(x) ищется в следующей последовательности: Составим вспомогательное ЛОДУ−I у¢+Р(x

ЛОДУ−II с постоянными коэффициентами.
ау²+bу¢+cу=0, где а, b, c – некоторые постоянные. Составим характеристическое уравнение аk2+bk+c=0, кото

ЛНДУ−II с постоянными коэффициентами.
ау²+bу¢+cу=R(x), где а, b, c – некоторые постоянные. Его общее решение имеет вид:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги