рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Теоремы сложения и умножения вероятностей.

Теоремы сложения и умножения вероятностей. - раздел Математика, «Теория вероятностей и математическая статистика» (пособие для учащихся) Теорема Сложения Вероятностей Двух Событий. Вероятность С...

Теорема сложения вероятностей двух событий. Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления:

Р(А+В)=Р(А)+Р(В)-Р(АВ).

Теорема сложения вероятностей двух несовместных событий. Вероятность суммы двух несовместных событий равна сумме вероятностей этих:

Р(А+В)=Р(А)+Р(В).

Пример 2.16. Стрелок стреляет по мишени, разделенной на 3 области. Вероятность попадания в первую область равна 0,45, во вторую — 0,35. Найти вероятность того, что стрелок при одном выстреле попадет либо в первую, либо во вторую область.

Решение.

События А — «стрелок попал в первую область» и В — «стрелок попал во вторую область» — несовместны (попадание в одну область исключает попадание в другую), поэтому теорема сложения применима.

Искомая вероятность равна:

Р(А+В)=Р(А)+Р(В)= 0,45+ 0,35 = 0,8.

Теорема сложения вероятностей п несовместных событий. Вероятность суммы п несовместных событий равна сумме вероятностей этих:

Р(А12+…+Ап)=Р(А1)+Р(А2)+…+Р(Ап).

Сумма вероятностей противоположных событий равна единице:

Вероятность события В при условии, что произошло событие А, называется условной вероятностью события В и обозначается так: Р(В/А), или РА(В).

Теорема умножения вероятностей.Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого при условии, что первое событие произошло:

Р(АВ)=Р(А)РА(В).

Событие В не зависит от события А, если

РА(В)=Р(В),

т.е. вероятность события В не зависит от того, произошло ли событие А.

Теорема умножения вероятностей двух независимых событий.Вероятность произведения двух независимых событий равна произведению их вероятностей:

Р(АВ)=Р(А)Р(В).

Пример 2.17. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р1 = 0,7; р2 = 0,8. Найти вероятность попадания при одном залпе (из обоих орудий) хотя бы одним из орудий.

Решение.

Вероятность попадания в цель каждым из орудий не зависит от результата стрельбы из другого орудия, поэтому события А – «попадание первого орудия» и В – «попадание второго орудия» независимы.

Вероятность события АВ – «оба орудия дали попадание»:

Искомая вероятность

Р(А+В) = Р(А) + Р(В) – Р(АВ) = 0,7 + 0,8 – 0,56 = 0,94.

 

 

Теорема умножения вероятностей п событий.Вероятность произведения п событий равна произведению одного из них на условные вероятности всех остальных, вычисленные в предположении, что все предыдущие события наступили:

Пример 2.18. В урне 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его обратно. Найти вероятность того, что при первом испытании появится белый шар (событие А), при втором – черный (событие В) и при третьем – синий (событие С).

Решение.

Вероятность появления белого шара в первом испытании:

Вероятность появления черного шара во втором испытании, вычисленная в предположении, что в первом испытании появился белый шар, т. е. условная вероятность:

Вероятность появления синего шара в третьем испытании, вычисленная в предположении, что в первом испытании появился белый шар, а во втором — черный, т. е. условная вероятность:

Искомая вероятность равна:

Теорема умножения вероятностей п независимых событий.Вероятность произведения п независимых событий равна произведению их вероятностей:

Р(А1А2…Ап)=Р(А1)Р(А2)…Р(Ап).

Вероятность появления хотя бы одного из события. Вероятность появления хотя бы одного из событий А1, А2, …, Ап, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий :

.

Пример 2.19. Вероятности попадания в цель при стрельбе из трех орудий таковы: р1 = 0,8; р2 = 0,7; р3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение.

Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события A1 (попадание первого орудия), А2 (попадание второго орудия) и А3 (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям А1, А2 и А3 (т.е. вероятности промахов), соответственно равны:

, , .

Искомая вероятность равна:

.

 

Если независимые события А1, А2, …, Ап имеют одинаковую вероятность, равную р, то вероятность появления хотя бы одного из этих событий выражается формулой:

Р(А)= 1 – qn,

где q=1- p


2.7. Формула полной вероятности. Формула Байеса.

Пусть событие А может произойти при условии появления одного из несовместных событий Н1, Н2, …, Нп, образующих полную группу событий. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами.

Вероятность появления события А вычисляется по формуле полной вероятности:

Р(А)=Р(Н1)Р(А/Н1)+ Р(Н2)Р(А/Н2)+…+ Р(Нп)Р(А/Нп).

Допусти, что произведен опыт, в результате которого событие А произошло. Условные вероятности событий Н1, Н2, …, Нп относительно события А определяются формулами Байеса:

,

или

Пример 2.20. В группе из 20 студентов, пришедших на экзамен, 6 подготовлены отлично, 8 – хорошо, 4 – удовлетворительно и 2 – плохо. В экзаменационных билетах имеется 30 вопросов. Отлично подготовленный студент может ответить на все 30 вопросов, хорошо подготовленный – на 24, удовлетворительно – на 15, плохо – на 7.

Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен: а) отлично; б) плохо.

Решение.

Гипотезы – «студент подготовлен отлично»;

– «студент подготовлен хорошо»;

– «студент подготовлен удовлетворительно»;

– «студент подготовлен плохо».

До опыта:

; ; ; ;

;

;

;

После опыта, по формуле Бейеса:

а) ;

б) .

Литература:

1. Гмурман, В. Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов/В. Е. Гмурман. — 9-е изд., стер. — М.: Высш. шк., 2003. — с.17 – 22, 24 – 63.

2. Гусак А.А. Теория вероятностей: справ. Пособие к решению задач / А.А. Гусак, Е.А. Бричикова. – 6-е изд. – Минск: ТетраСистемс, 2007. – с.4 –13, 21 – 83.

Контрольные вопросы:

1. Что называют опытом?

2. Что называют событием?

3. Какое событие называют достоверным в данном опыте?

4. Какое событие называют невозможным?

5. Когда два события называются несовместными?

6. Какие события называются противоположными? Приведите пример противоположных событий.

7. Что называют полной группой событий?

8. Какие события называют равновозможными? Приведите примеры таких событий.

9. Что называют элементарным исходом?

10. Какие исходы называю благоприятными данному событию?

11. Какие операции можно проводить над событиями? Дайте им определения. Как обозначаются? Приведите примеры.

12. Что называется вероятностью?

13. Чему равна вероятность достоверного события?

14. Чему равна вероятность невозможного события?

15. В каких пределах заключена вероятность?

16. Как определяется геометрическая вероятность на плоскости?

17. Как определяется вероятность в пространстве?

18. Как определяется вероятность на прямой?

19. Чему равна вероятность суммы двух событий?

20. Чему равна вероятность суммы двух несовместных событий?

21. Чему равна вероятность суммы n несовместных событий?

22. Какую вероятность называют условной? Приведите пример.

23. Сформулируйте теорему умножения вероятностей.

24. Как найти вероятность появления хотя бы одного из событий?

25. Какие события называют гипотезами?

26. Когда применяются формула полной вероятности и формулы Байеса?

 

– Конец работы –

Эта тема принадлежит разделу:

«Теория вероятностей и математическая статистика» (пособие для учащихся)

УО Бобруйский государственный аграрно экономический колледж... В П Кошелева Теория вероятностей и математическая статистика пособие...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теоремы сложения и умножения вероятностей.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

В.П. Кошелева
  «Теория вероятностей и математическая статистика» (пособие для учащихся)

Правила комбинаторики
Подсчитать общее число возможных комбинаций помогает одно из важнейших правил комбинаторики — правило умножения: если первый элемент в комбинации можно выбрать m способами, посл

Перестановки
Перестановки– комбинации из n элементов, которые отличаются друг от друга только порядком элементов. Общее число перестановок из n элементов обозначается

Размещения
Размещения – комбинации из n элементов по m элементов, которые отличаются друг от друга или самими элементами или их порядком. Размещения обозначаются

Сочетания
Сочетания– все возможные комбинации из n элементов по m элементов, которые отличаются друг от друга по крайней мере хотя бы одним элементом. Сочетания обозна

Всякий результат опыта называется событием.
Событие называется случайным, если при одних и тех же условиях оно может как произойти, так и не произойти. Вместо "произойти" говорят также "наступ

Виды случайных событий
События,которые никогда не могут произойти называетсяневозможными. События, которые происходят при каждом экспериментеназываютсядостоверными.

Геометрическое определение вероятности
В предыдущем пункте мы научились вычислять вероятности событий в опытах, имеющих конечное число равновозможных исходов. Для этого не требуется проводить никаких экспериментов — нужно всего лишь пра

Формула Бернулли
Если производится несколько испытаний, причем вероятность события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно с

Локальная теорема Лапласа
Пользоваться формулой Бернулли при больших значениях п достаточно трудно, так как формула требует выполнения действий над громадными числами. Например, если п = 50, k

Интегральная теорема Лапласа
Предположим, что производится п испытаний, в каждом из которых вероятность появления события А постоянна и равна р (0 < р < 1). Как вычислить вероятность

Понятие случайной величины
Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не м

Виды случайных величин.
В примере 4.2 случайная величина X могла принять одно из следующих возможных значений: 0, 1, 2, . . ., 100. Эти значения отделены одно от другого промежутками, в которых нет возможных значен

Закон распределения вероятностей дискретной случайной величины
На первый взгляд может показаться, что для задания дискретной случайной величины достаточно перечислить все ее возможные значения. В действительности это не так: случайные величины могут иметь один

Функция распределения.
Функция распределенияслучайной величины – это функция действительн

Математическое ожидание случайной величины
Как уже известно, закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее п

Дисперсия случайной величины. Среднее квадратическое отклонение
Мы рассмотрели число, которое характеризует поведение случайной величины в среднем. Но среднее значение далеко не всегда дает даже общее представление о поведении случайной величины. Есть

Биноминальное распределение
Пусть производится п независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Вероятность наступления события во всех испытаниях постоянна и равна р

Распределение Пуассона.
Пусть производится п независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Вероятность наступления события во всех испытаниях постоянна и равна р

Равномерное распределение
Распределение вероятностей случайной величины Х называется равномерным на отрезке , если плотность вероятности равна

Нормальное распределение.
Распределение с непрерывной случайной величины называется нормальным, если плотность распределения ее описывается формулой:

Понятие о системе нескольких случайных величин
  До сих пор рассматривались случайные величины, возможные значения которых определялись одним числом. Такие величины называют одномерными. Кроме одно

Закон распределения вероятностей дискретной двумерной случайной величины
  Законом распределения дискретной двумерной случайной величины называют перечень возможных значений этой величины, т. е. пар чисел (хi, yj) и их вероятно

Плотность непрерывной двумерной случайной величины
Двумерная случайная величина задавалась с помощью функции распределения. Непрерывную двумерную величину можно также задать, пользуясь плотностью распределения. Будем предполагать, что функ

Числовые характеристики непрерывной системы двух случайных величин
Зная плотности распределения составляющих Х и У непрерывной двумерной случайной величины (X, У), можно найти их математические ожидания и дисперсии:

Предмет математической статистики
Математическая статистика — это раздел математики, посвященный методам сбора, анализа и обработки статистических данных для научных и практических целей. Математическая ст

Первичная обработка выборок. Генеральная совокупность и выборка
Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Пример 7.1. Если имеется п

Основные виды выборок
При составлении выборки можно поступать двумя способами: после того как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. В соот

Способы отбора
На практике применяются различные способы отбора. Принципиально эти способы можно подразделить на два вида: 1. Отбор, не требующий расчленения генеральной совокупности на части.

Вариационный ряд
Основная форма представления выборочной совокупности – вариационные ряды. Пусть посредством независимых испытаний, проведенных в одинаковых условиях, получены числовые зна

Полигон частот
Полигон частот образуется ломаной линией, соединяющей точки, соответствующие срединным значениям интервалов группировки и частотам этих интервалов, срединные значения откладываются

Эмпирическая функция распределения
Эмпирической функцией распределения называется функция F*(х), определяющая для каждого значения х относительную частоту события X < х, т.е. по определению

Среднее арифметическое
Среднее арифметическое, или просто среднее, — одна из основных характеристик выборки. Среднее арифметическое – такое значение признака, сумма отклонений от которого выборо

Медиана
Медианой (Ме) называется такое значение признака X, когда ровно половина значений экспериментальных данных меньше ее, а вторая половина — больше. Если данных

Дисперсия и стандартное отклонение
Дисперсией называется средний квадрат отклонения значений признака от среднего арифметического. Дисперсия, вычисляемая по выборочным данным, называется выборочной дисперсие

Коэффициент вариации
Стандартное отклонение выражается в тех же единицах измерения, что и характеризуемый им признак. Если требуется сравнить между собой степень варьирования признаков, выраженных в разных единицах изм

Коэффициент осцилляции
С целью, аналогичной введению коэффициента вариации, вводитсякоэффициент осцилляции по формуле:

Теория оценок
  8.1. Статистические оценки параметров распределения. 8.2.Несмещенные, эффективные и состоятельные оценки. 8.3. Точность оценки, доверительная вероятность (надежнос

Несмещенные, эффективные и состоятельные оценки
Для того чтобы статистические оценки давали «хорошие» приближения оцениваемых параметров, они должны удовлетворять определенным требованиям. Пусть

Доверительный интервал
Точечной называют оценку, которая определяется одним числом. При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, т. е. привод

Доверительные интервалы для оценки математического ожидания
нормального распределения при известном . Пусть количественный признак X генеральной совокупности распределен норм

Нулевая и конкурирующая, простая и сложная гипотезы
Часто необходимо знать закон распределения генеральной совокупности. Если закон распределения неизвестен, но имеются основания предположить, что он имеет определенный вид (назовем его А), вы

Сравнение двух дисперсий нормальных генеральных совокупностей
По независимым выборкам, объемы которых и , извлеченным из нормальных генеральных с

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги