рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Некогерентные и когерентные процессы преобразования света в свет

Некогерентные и когерентные процессы преобразования света в свет - раздел Физика, Нелинейная оптика Некогерентные И Когерентные Процессы Преобразования Света В Свет. В Предыдуще...

Некогерентные и когерентные процессы преобразования света в свет. В предыдущем вопросе на примере (элементарных актов взаимодействия фотонов с микрообъектом были рассмотрены различные процессы преобразования света в свет. В одних процессах переходы с поглощением первичных фотонов и переходы с испусканием вторичных фотонов четко разграничены во времени: они сопровождаются изменениями в состоянии микрообъекта (даже если начальное и конечное состояния микрообъекта оказываются одинаковыми). В других процессах переходы с поглощением первичных фотонов и переходы с испусканием вторичных фотонов не разграничиваются во времени и никаких изменений в состоянии микрообъекта обнаружить невозможно; в этих процессах выполняются законы сохранения энергии и импульса для фотонов, как если бы фотоны непосредственно взаимодействовали друг с другом.

Процессы первого типа принято называть некогерентными процессами преобразования света в свет, а процессы второго типа — когерентными процессами.

Остановимся подробнее па специфике тех и других процессов. Некогерентные процессы. В некогерентных процессах первичная световая волна (волна накачки), поглощаясь веществом, приводит к определенным изменениям заселенности уровней частиц вещества. Затем новые квантовые переходы в веществе приводят к высвечиванию вторичной световой волны.

Очевидно, что при этом не может быть и речи о каком-либо взаимодействии волны накачки и вторичной световой волны. Ведь сначала волна накачки переводит вещество в возбужденное состояние, а затем уже (спустя какое- то время!) вещество, возвращаясь в исходное состояние, излучает вторичную световую волну. Примером некогерентного процесса преобразования света в свет может служить процесс генерации лазерного излучения, происходящий при условии оптической накачки.

Излучение от лампы-вспышки является волной накачки, а генерируемое в активной среде лазера когерентное излучение — вторичной световой волной. Другим примером может служить широко используемое в лампах дневного света явление фотолюминесценции. Когерентные процессы. В отличие от некогерентных процессов в когерентных процессах нельзя разделить во времени акты взаимодействия с веществом волны накачки и вторичной волны — оба эти акта должны рассматриваться как единый процесс (напомню, что именно в этом и состоит специфика переходов, идущих через виртуальные уровни). Указанная специфика когерентных процессов проявляется в двух отношениях. Во-первых, невозможно обнаружить каких-либо изменений в состоянии вещества, взаимодействующего со световыми волнами.

Во-вторых, можно в известном смысле говорить о непосредственном взаимодействии волны накачки и вторичной волны. Разумеется, взаимодействие волн осуществляется через «посредство» вещества и определяется его параметрами.

Однако «участие» вещества, хотя и принципиально необходимо, имеет виртуальный характер, что позволяет говорить о как бы непосредственном взаимодействии световых волн. Взаимодействие волн требует согласования волны накачки и вторичной волны по частоте, направлению распространения и поляризации. Для этого каждая из взаимодействующих волн, очевидно, должна характеризоваться определенной частотой, определенным направлением распространения и определенной поляризацией.

Следовательно, в когерентных процессах должны участвовать световые волны с высокой степенью когерентности. Можно сказать, что все когерентные процессы — это процессы преобразования когерентного света в когерентный свет. Важность когерентности света в когерентных процессах может быть понята также на основе фотонных представлений. Поскольку для протекания когерентного процесса необходимо выполнение законов сохранения энергии и импульса для фотонов, то, следовательно, и первичные, и вторичные фотоны должны находиться в определенных состояниях — состояниях с определенной энергией и определенным импульсом.

Ясно, что, чем больше фотонов находится в требуемых состояниях и чем меньше разброс фотонов по всевозможным иным состояниям, тем эффективнее будет протекать рассматриваемый когерентный процесс. Уменьшение же разброса фотонов по состояниям как раз и означает повышение степени когерентности излучения Требование согласования параметров волны накачки и вторичной волны выступает в виде так называемого условия волнового синхронизма.

На «фотонном языке» это условие выражает закон сохранения импульса для фотонов, участвующих в данном процессе. Условие волнового синхронизма играет важную роль в когерентных процессах — оно является необходимым условием эффективной передачи световой энергии от волны накачки ко вторичной волне. 4.2.

– Конец работы –

Эта тема принадлежит разделу:

Нелинейная оптика

Историческая справка Среди огромного количества новых научных и технических возможностей, открывшихся после создания лазеров, особое место занимают… Одним из важных и наиболее интересных направлений является исследование… Эти исследования стали возможны после создания лазеров и привели к возникновению новой области физики – нелинейная…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Некогерентные и когерентные процессы преобразования света в свет

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Фотоны друг с другом непосредственно не взаимодействуют
Фотоны друг с другом непосредственно не взаимодействуют. В физике используется (и подтверждается) представления о «непосредственном взаимодействии», приводящем к рассеянию частиц друг на друге, к п

Однофотонные и многофотонные переходы
Однофотонные и многофотонные переходы. Оптические переходы разделяются на однофотонные и многофотонные. В однофотонном переходе участвует, т. е. испускается либо поглощается один фотон. В многофото

Условие волнового синхронизма на примере генерации второй гармоники
Условие волнового синхронизма на примере генерации второй гармоники. Рассматривая генерацию второй оптической гармоники, будем полагать, что направления волны накачки и вторичной волны совпадают и

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги