рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

МОМЕНТ ИНЕРЦИИ. ТЕОРЕМА ШТЕЙНЕРА

МОМЕНТ ИНЕРЦИИ. ТЕОРЕМА ШТЕЙНЕРА - раздел Физика, ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ Согласно Формуле (5.2), Момент Инерции Тела – Аддитивная Величина ...

Согласно формуле (5.2), момент инерции тела – аддитивная величина ,

момент инерции тела равен сумме моментов инерции всех его частиц.

Важно отметить, что момент инерции существует безотносительно к вращению. Каждое тело, независимо от того, вращается оно или нет, обладает определенным моментом инерции относительно любой оси. Из выражения (5.7) следует, что один и тот же момент силы вызывает большее угловое ускорение у того тела, у которого момент инерции меньше. Таким образом, момент инерции является мерой инертности тела при вращательном движении.

Эту формулу можно представить в виде , где - плотность -той частицы, - ее объем. Если тело однородно, его плотность постоянна, и суммирование по всем частицам сводится к интегралу: Интегрирование производится по всему объему тела. Величины и зависят от местоположения частицы, т.е. являются функциями ее координат.

Найдем момент инерции однородного диска относительно оси, перпендикулярной плоскости диска и проходящей через его центр (рис. 5.12).

Разобьем диск на кольцевые слои толщиной и рассмотрим один такой слой. Все его точки находятся на одинаковом расстоянии от оси вращения, равном . Объем слоя равен , где - толщина диска. Диск однородный, его плотность одинакова во всех точках, тогда момент инерции диска равен

где - радиус диска. Очевидно, масса диска равна , тогда получаем .

Определение момента инерции тела относительно произвольной оси существенно упрощается, если воспользоваться теоремой Штейнера: момент инерции относительно произвольной оси равен сумме момента инерции относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями .

Для доказательства этой теоремы рассмотрим ось С (рис.5.13), проходящую через центр масс тела, и параллельную ей ось О, отстоящую от точки С на расстояние . Из точки на оси О к оси С проведем вектор,перпендикулярный к обеим осям. Из конца вектора проведем вектор , перпендикулярный к оси С в точку с элементарной массой . Аналогичный вектор проведем из начала вектора к той же элементарной массе. Из рисунка видно, что Квадрат расстояния от оси С до выбранной частицы равен , а от оси О Тогда момент инерции относительно оси О

В этом выражении - момент инерции тела относительно оси С, - масса тела, , где - вектор, проведенный от оси С к центру масс тела, =0, так как центр масс лежит на оси С, поэтому второе слагаемое равно нулю. Тогда получаем

что и требовалось доказать.

В случае произвольного твердого тела связь между векторами и более сложная, чем рассмотренная выше. Однако модули этих векторов всегда остаются пропорциональны друг другу, следовательно, каждая компонента вектора будет линейно зависеть от компонент вектора :

Здесь и т.д. – коэффициенты пропорциональности, имеющие размерность момента инерции. При увеличении в некоторое число раз в такое же число раз увеличится каждая из компонент ,, и каждая из компонент , а значит, и сам вектор . Взаимная ориентация векторов иопределяется значениями коэффициентов пропорциональности. Все сказанное означает, что эти коэффициенты являются компонентами тензора второго ранга, который называется тензором инерции

 

– Конец работы –

Эта тема принадлежит разделу:

ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ВРАЩАЮЩЕГОСЯ ТВЕРДОГО ТЕЛА Кинетическая энергия тела равна сумме...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: МОМЕНТ ИНЕРЦИИ. ТЕОРЕМА ШТЕЙНЕРА

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Любое движение твердого тела может быть представлено как наложение двух основных видов движения – поступательного и вращательного. При поступательном движении все точки тела получают за од

ДВИЖЕНИЕ ЦЕНТРА МАСС ТВЕРДОГО ТЕЛА
Представим твердое тело как систему материальных точек, разбив его на элементарные массы . Каждая масса

ГИРОСКОПИЧЕСКИЕ СИЛЫ, ГИРОСКОПЫ И ИХ ПРИМЕНЕНИЕ В ТЕХНИКЕ
Гироскопом называют массивное симметричное тело, вращающееся с большой угловой скоростью вокруг своей оси симметрии. Рассмотрим поведение гироскопа на примере волчка. Опыт показывает, что если ось

ТВЕРДОГО ТЕЛА
Рассмотрим вращение тела вокруг неподвижной оси (рис.5.17). Линейная скорость элементарной массы

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ПРИ ПЛОСКОМ ДВИЖЕНИИ
Плоское движение может быть представлено как наложение двух движений – поступательного со скоростью центра масс

УСЛОВИЯ РАВНОВЕСИЯ ТВЕРДОГО ТЕЛА
Тело может оставаться в состоянии покоя в том случае, когда нет причин, приводящий к возникновения поступательного движения или вращения. Для этого необходимо выполнение двух условий:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги