рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Транскрипция, генетический код, процессинг РНК.

Транскрипция, генетический код, процессинг РНК. - раздел Химия, Использование гидролиза для определения химических свойств белка, ренгеноструктурный анализ, электронная микроскопия Биосинтез Рнк – Транскрипция –Процесс Считывания Генетическо...

Биосинтез РНК – транскрипция –процесс считывания генетической информации с ДНК, при котором нуклеотидная последовательность ДНК кодируется в виде нуклеотидной последовательности РНК. Используется в качестве энергии и субстрата – нуклеозид-3-фосфат с рибозой. В основе лежит принцип комплиментарности – консервативный процесс – синтезируется новая одноцепочная РНК во время всей интерфазы, начинается в определенных участках – промоторах, заканчивается в терминаторах, а участок между ними – оперон (транскриптон) – содержит один или несколько функционально связанных генов, иногда содержит гены которые не кодируют белки. Отличия транскрипции: 1) транскрибируются отдельные гены. 2) не требуется праймера. 3) в РНК включается рибоза, а не дезоксирибоза.

Этапы транскрипции:1) связывание РНК-полимеразы с ДНК. 2) инициация – образование цепи РНК. 3) элонгация или рост цепи РНК. 4) терминация.

1 этап – участок с которым связывается РНК-полимераза называется промотор (40 нуклеотидных пар) – имеет сайт узнавания, прикрепления, инициации. РНК-полимераза узнав промотора садится на него и образуется закрытый промоторный комплекс, в котором ДНК спирализовано и комплекс может легко диссоциировать и переходить в открытый промоторный комплекс – связи прочные, азотистое основание выворачивается наружу.

2 этап – инициациясинтеза РНК заключается в образовании нескольких звеньев в цепи РНК, синтез начинается на одной цепи ДНК 3’-5’ и идет в направлении 5’-3’. Стадия заканчивается отделением б-субъединицы.

3 этап – элонгация– удлинение цепочки РНК – происходит за счет Core-рРНК-полимеразы. Нить ДНК деспирализована на 18ти парах, а на 12 – гибрид – общий гибрид ДНК и РНК. РНК-полимераза продвигается по цепочке ДНК, а после восстановление цепочки ДНК. У эукариот когда РНК достигает 30 нуклеотидов на 5’-конце образуется защитная структура КЭП.

4 стадия – терминация– происходит на терминаторах. В цепочке находится участок богатый ГЦ, а затем от 4 до 8 расположенных подряд А. После прохождения участка в РНК продукте образуется шпилька и фермент дальше не идет, синтез прекращается. Важную роль играет белковый фактор терминации – ро и тауэр. Пока шел синтез пирофосфат ингибировал ро белок, т.к. фермент остановился (шпилька) прекратился синтез фосфорной кислоты. Ро белок активируется и проявляет нуклеозидфосфатазную активность, что приводит к высвобождению РНК, РНК-полимеразы, которая в дальнейшем объединяется с субчастицей.

Процессинг –созревание РНК. Включает в себя: 1) образование КЭП на 5’-конце, участвует в присоединение к рибосоме. 2) на 3’-конце происходит полиаденилирование и образуется хвост из ста-двухсот адениловых нуклеотидов, он защищает ‘-конец от действия нуклеаз и помогает проходить через ядерные поры и играет роль в присоединение к рибосоме. 3) сплайсинг –вырезается не кодирующие последовательности – интроны. Это происходит двумя путями: а) осуществляется сплайсосомой – это нуклеопротеид, содержащий ряд белков и малую ядерную РНК. В начале происходит выпетливание интронов, при этом остаются только кодирующие последовательности – экзоны. Ферменты эндонуклеазы разрезают, а лигазы сшивают оставшиеся экзоны. Т.О. интроны уходят. Альтернативный сплайсинг – на одной последовательности нуклеиновой кислоты РНК образуют несколько белков. Самосплайсинг – самостоятельное удаление интронов. Нарушение сплайсинга: 1) системная красная волчанка. 2) фенилкетонурия. 3) гемоглобинопатия. Матричная РНК прокариот не подвергается процессингу, т.к. у них не интронов. Процессинг тРНК. Предшественник тРНК расщепляется и отщепляется нуклеотид 5’-3’ Q P. К 3’-концу присоединяется последовательность ССА с ОН-группой, на 5’ конце фосфорилированое пуриновое основание. Дугидроуридиновая петля – АРСаза. Процессинг рРНК.Предшественник рРНК – прорибосомальная РНК 45S синтезируется в ядрышке и подвергается действию рибонуклеаз и образуется 5,8S 18S 28S. Они на 70% спирализуются. рРНК играет роль в формировании рибосомы и участвует в каталитических процессах. Субъединица формируется из рРНК в ядре. Малая субъединица 30S, большая субъединица 50S и образуется рибосома 70S у прокариот, у эукариот 40S + 60S = 80S. Формирование рибосом происходит в цитоплазме.

Участки рибосом для связывания РНК: 1) в малых субъединицах, у которых есть последовательность Шайна-Далгорна мРНК 5’ГГАГГ3’ 3’ЦЦУЦЦ5’. Матричная РНК крепится к малой субъединице. У эукариот КЭП-связывающий участок для мРНК. Участок для связывания с тРНК: а) Р-участок – пептидильный центр для связывания мРНК с растущей пептидной цепью – пептидил-тРНК-связывающий. б) А-участок – для связи тРНК с аминокислотой – аминоацильный участок 2) В большой субъединице Е-участок с пептидилтрансферазной активность.

Обратная транскрипция характерна для ретровирусов или вирусы содержащие РНК – вирус ВИЧ-инфекции, онковирусы.

На цепочке РНК происходит синтез ДНК под действием фермента обратной транскриптазы или ревертазы, или ДНКРНК-полимераза. Внедряясь в клетку хозяина происходит синтез ДНК, в которая встраивается в ДНК хозяина и начинается транскрипция своих РНК и синтез собственных белков.

Генетический код, его характеристика. Генетический код – это нуклеотидная последовательность молекулы рРНК в которой имеются кодовые слова для каждой аминокислоты. Он заключается в определенной последовательности расположения нуклеотидов в молекуле ДНК.

Характеристика. 1) генетический код триплетный – т.е. каждая а/к-та зашифрована тремя нуклеотидами. 2) генетический код для а/к является вырожденным или избыточным – подавляющее большинство а/к кодируется несколькими кодонами. Всего 64 триплета образуется, из них 61 триплет кодирует определенную а/к, а три триплета – АУГ, УАА, УГА являются нонсенс-кодонами, т.к. они не кодируют ни одной из 20 а/к, выполняют функцию терминации синтеза. 3) Генетический код является непрерывным, отсутствуют знаки препинания, т.е. сигналы, указывающие на конец одного триплета и начала другого. Код является линейным, однонаправленным, непрерывным. Например - АЦГУЦГАЦЦ. 4) кодоном включения синтеза служит триплет АУГ. 5) Генетический код является универсальным.

 

22. Трансляция –биосинтез белка. Этапы трансляции: 1) инициация. 2) элонгация. 3) терминация. Инициация – происходит активация а/к.

Инициирующая аатРНК будет взаимодействовать с 1 а/к будущего белка только карбоксильной группой, а 1 а/к может давать на синтез только NH2 группу, т.о. синтез белка начинается с N-конца.

Сборка инициирующего комплекса на малой субчастице. Факторы: 30S мРНК фомилметионил тРНК IF 123 Mg2+ ГТФ – источник энергии

Нагруженная факторами инициации малая субъединица находит на мРНК старт кодон АУГ или ГУГ и по нему устанавливается рамка считывания, т.е. старт кодон помещается в Р-участок. К нему подходит формлметионил тРНК, что сопровождается высвобождением фактора IF 3, затем присоединяется большая субъединица и высвобождается IF 1 и IF2, происходит гидролиз 1ГТФ и образуется рибосома. Элонгация – рабочий цикл рибосомы. Включает в себя три шага: 1) связывание аатРНК с А-участком т.к. занят Р-участок– нужны факторы элонгации EF-TU, EF-TS и ГТФ.. 2) транспептидирование Е-участок перебрасывает а/к и образуется пептидная связь. Факторы элонгации у прокариот: EF-TU, EF-TS, EF-G. 3)Транслокация – сначала EF-G деацилированная тРНК Р-участка покидает рибосому, происходит перемещение на 1 триплет в сторону 3’ конца; перемещение пептида из А, в Р-участок – используется ГТФ и фактор элонгации – EF-G-транслоказа, А – участок опять свободен и процесс повторяется. Терминация– узнавание терминирующих кодонов УАА, УГА, УАГ с помощью релизинг-факторов RF 1 2 3. При попадании терминального кодона в А-участок к нему не присоединяется тРНК, а присоединяется один из факторов терминации, который блокирует элонгацию, что сопровождается активацией эстеразной активности пептидилтрансферазы участка Е. Происходит гидролиз сложных эфирных связей между пептидом и тРНК, рибосома покидает пептид, тРНК и диссоциирует на субъединицы, которые потом могут быть использованы.

Формирование структуры происходит одновременно с помощью белков-шаперонов – белки теплового шока. На синтез одной пептидной связи расходуется 1АТФ на аминоацилирование тРНК (присоединение аминокислоты), 1ГТФ на связь аатРНК с А-участком и 1ГТФ на транслокацию. Затрата энергии около 4 макроэргических связей на синтез одной пептидной связи.

 

23. Лактозный оперон.Регуляция репликации осуществляется с помощью концентрации белка Dna и гуанозинтетрафосфата. Основная регуляция экспрессии генов осуществляется на уровне транскрипции (зависит от стадии развития клетки, всех факторов, действия гормонов и других регуляторных компонентов). В разных клетках тканей только 5% генов экспрессируется, 97% молчат – мусорные ДНК – регуляторы транскрипции это хрономеры и ряд регуляторных последовательностей. Если присоединение белка-регулятора к ДНК вызывает транскрипцию, то это позитивная (+) регуляция, если подавление транскрипции – негативная (-) регуляция. Позитивная регуляция – ген выключен, присоединение белка-регулятора приводит к началу синтеза, в итоге ген включается. Т.О. белок-регулятор может быть индуктором или активатором. Негативная регуляция – ген включен, идет синтез РНК, если присоединяется белковый фактор регуляции (ингибитор или репрессор синтеза белка)Д ген выключается. Многие гормоны и другие факторы влияют на присоединение белка регулятора. Лактозный оперон E. Coli – негативная регуляция. Основные элементы его работы: в молекуле ДНК – участок регулятор, промотор, про-оперон и три структурных гена: лаг 1, лаг 2, лаг 3 и терминатор. Лаг 1 – осуществляет синтез фермента лактазы или бета-галактозидазы. Лаг 2 – фермент пермиаза, участвует в транспорте лактозы через мембрану. Лаг 3 – фермент трансацилаза. Регулятор – синтез мРНК на рибосоме, ведет к образованию белка репрессора, он присоединяется к оператору (т.к. имеет сродство), садится на него, а т.к. участки промотора и оперона перекрываются – РНК-полимераза не может присоединиться к промотору и транскрипция выключается. Глюкоза и галактоза обеспечиваю сходство репрессора и оператора. Если сходства не будет, лактоза взаимодействует с репрессором, меняя его трансформацию, и он не садится на оперон, т.к. теряет сходство к нему. РНК-полимераза садится на промотор и начинается транскрипция матричной РНК. Лактоза – это индуктор, а процесс – индукция – форма негативной регуляции, называемая так потому, что транскрипция прекращается из-за присоединения репрессора и его отщепление приводит к началу синтеза. Позитивная регуляция – ТАТА фактор – имеет сходство к участку ТАТА-бокс. ТАТА фактор садится на ТАТА-бокс – сигнал для РНК-полимеразы для узнавания своего промотора, села на него и начала транскрипцию рядом расположенных генов. У прокариот преоблалает негативная регуляция, для эукариот это не выгодно. Участки-энхансеры (усилители транскрипции) + белок-регулятор приводит к усилению транскрипции. Саинсеры + белок-регулятор à выключает транскрипцию и изменяет структуру хромосом.

– Конец работы –

Эта тема принадлежит разделу:

Использование гидролиза для определения химических свойств белка, ренгеноструктурный анализ, электронная микроскопия

Образование АТФ в процессе метаболизма идет двумя путями окислительного и субстратного фосфорилирования дых цепь ЦТК гликолиз Возникновение... Свойства белков их биологическая роль Методы очистки и разделения Свойства белков кислото основные и...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Транскрипция, генетический код, процессинг РНК.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Первичная, вторичная, третичная структура ДНК.
Нуклеиновые кислоты ДНК и РНК – сложные высокомолекулярные соединения, которые состоят из нескольких компонентов более простого строения. В молекуле ДНК углевод представлен дезоксирибозой, а в моле

Биосинтез белков. Роль нуклеиновых кислот.
В молекуле ДНК углевод представлен дезоксирибозой, а в молекуле РНК рибозой. ДНК и РНК содержат фосфорную кислоту, а также по два пуриновых (аденин, гуанин) и пиримидиновых (цитозин, урацил, тимин)

Биосинтез ДНК. Повреждение и репарация ДНК.
Репликация ДНК – это процесс, при котором информация, закодированная последовательностью нуклеотидов, родительской ДНК с абсолютной точностью передается дочерней ДНК; процесс идет

Дезаминирование, трансаминирование, декарбоксилирование.
В тканях происходит только окислительное дезаминирование а/к, при этом происходит отщепление аминогруппы и выделяется аммиак. Прямое окислительное дезаминирование

Связь трансаминирования и дезаминирования. Непрямое дезаминирование.
Непрямое окислительное дезаминирование в тканях. Включает в себя 2 реакции в ходе которых участвуют 2 различных фермента. Любая а/к подвергается трансаминированию, она реа

Обмен тиоаминокислот.
Обмен метионина –незаменимая а/к, 1) синтез белков, синтез цистеина, 2) является донором SH группы, 3) активная форма метионина – S адгенозилметионин, участвует в реакциях метилиро

И 31. Переваривание нуклеопротеидов в ЖКТ. Распад пуриновых и пиримидиновых нуклеотидов. Подагра.
Нуклеопротеиды– это сложные белки, кот состоят из белковой части и нуклеиновых кислот. В зависимости от содержания нуклеиновых кислот различают ДНП и РНП. Нуклеопротеиды состоят из

Биосинтез пуриновых нуклеотидов.
Источники пуринового кольца: С4 С5 С7 – глицин N3 N9 – глу – NH2 C6 – CO2 N1 – fcgfhnfn C2

Биосинтез пиримидиновых нуклеотидов.
Источники пиримидинового кольца: аспартат, карбомоилфосфат. Сначала синтезируется пиримидиновое кольцо, а потом достраивается рибоза и фосфорная кислота. При дефиците ферментов синтеза УМФ

Синтез гемоглобина. Обмен железа.
Нb является хромопротеидом и относится к подгруппе неэнзимных (неферментных) хромопротеидов. Гемоглобин состоит из белковой части – глобин и небелковой части – гем. Нb состоит из 4

Взаимосвязь всех обменов.
Глюкозо6фосфат– активная форма глюкозы, которая идет на синтез гликогена. При распаде гликогена образуется глюкозо1фосфат и из нее глкозо6фосфат. Глюкозо6фосфат участвует в гликоли

Нервная ткань.
Функции нервной системы: обработка, хранение, передача информации через синаптические связи клеток. Главный элемент нервной ткани – нейрон. Синапс – осуществляет связь между отдель

Мышечная ткань.
Мышцы– гладкие (непроизвольные) и поперечно-полосатые (сердечная – непроизвольная, скелетные – медленные, самопроизвольно сокращающиеся, иннервируется вегетативной нервной системой

Пигменты мочи и их происхождение.
Пигменты мочи: В норме стеркобилиноген и небольшое количество уробилиногена; при паренхиматозной желтухе в моче появляется ПБ и уробилин; при гемолитической желтухе повышается коли

Дыхательная цепь.
I комплекс – НАДН-дегидрогеназа-коэнзим Q-редуктаза (F-цикл). НАДН под действием флавиновой НАДН-дегидрогеназы окисляется в НАД. Протоны от НАДН транспортируются на наружный листок

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги