рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

СТРАТИГРАФИЧЕСКИЙ МЕТОД

СТРАТИГРАФИЧЕСКИЙ МЕТОД - раздел Геология, ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ Историко-Геологическое Направление Рассматривает Развитие Геологических Событ...

Историко-геологическое направление рассматривает развитие геологических событий во вре-мени и в пространстве. Изучение этих событий немыслимо без стратиграфических и геохроноло­гических исследований. При стратиграфических исследованиях осуществляют две последователь» ные операции:

^расчленение разреза на отдельные стратиграфические подразделения (слои, пачки, гори­зонты, подъярусы, ярусы и т.д.) на основании различий состава горных пород и заключенных в них ископаемых органических остатков, а также проявлений перерывов и несогласий;

2) сопоставление или стратиграфическую корреляцию выделенных в разных разрезах слоев, пачек, горизонтов, т.е. установление их геологической одновозрастности по латерали.

Фактической основой стратиграфических исследований служат конкретные геологические объекты - естественные или искусственные обнажения горных пород и керн скважин, а также оп­ределяемые геофизическими методами (электро-, сейсмо- и другой каротаж) изменения физичес-ких свойств горных пород в скважинах. После обобщения ряда частных геологических разрезов составляется сводная стратиграфическая колонка, в которой все слои горных пород располагают-ся в строгой последовательности своего образования и залегания, т.е. в определенном хронологи-ческом порядке, обычно от более древних внизу к более молодым вверху.

Стратиграфия(лат. stratum - слой, grapho - пишу) - раздел исторической геологии, занима­ющийся изучением исторической последовательности, первичных взаимоотношений и географи-ческого распространения осадочных, вулканогенно-осадочных и метаморфических образований, слагающих земную кору и отражающих естественные этапы развития Земли и населявшего ее органического мира (Геологический словарь, 1973). По определению Д.Л.Степанова и М.С.Ме-сежникова (1979), стратиграфия занимается изучением слоистых, пластующихся или стратифици­рованных образований, прежде всего осадочных пород, устанавливает их временные и простран­ственные соотношения. К ней лучше всего подходит термин, которым пользовался наш великий соотечественник М.В.Ломоносов (1711-1765), предваряя нынешнее понимание геологии, - "наука о слоях земных". Этот метод является одним из главных в исторической геологии, поскольку большую часть информации для восстановления истории земной коры нам дают осадочные поро­ды. Стратиграфия устанавливает последовательность напластования слоев (стратонов) разного ранга, разрабатывает геохронологическую шкалу для датировки геологических событий.

Стратиграфия играет важнейшую роль при геологических исследованиях. Без нее немысли­мо проводить геологическое картирование, решать проблемы геологического развития отдельных регионов и Земли в целом, реконструировать палеогеографические обстановки и установить эта-


пы эволюции органического мира. Без детальных стратиграфических исследований невозможно раскрывать сложное строение структур земной коры, проводить поиски и разведку полезных ис­копаемых.

Стратиграфия решает три соподчиненных задачи: 1) Расчленение конкретных разрезов и со­ставление местной стратиграфической схемы. 2) Корреляция (сопоставление) отдельных слоев и толщ удаленных друг от друга разрезов. Создание сводной (региональной) стратиграфической схемы. 3) Проведение межрегиональной и глобальной корреляции. Создание общей (планетар­ной) стратиграфической шкалы.

Стратиграфия руководствуется в своей деятельности определенными принципами. С.В.Мей-ен (1989) считал универсальными три таких принципа.

Первый из них - принцип последовательности напластования, который сформулировал в 1669 г. Н.Стеной: "При ненарушенном залегании каждый нижележащий слой древнее покрываю­щего слоя". Этот так называемый принцип суперпозиции позволяет установить простые времен­ные соотношения типа "раньше - позже".

Второй принцип - гомотаксиса (гомотаксальности) или идентичности (принцип Гексли). Го-мотаксальность - это соответствие слоев в разных разрезах по признакам, одинаково упорядочен­ным в каждом разрезе (Мейен, 1989). Этот принцип дает возможность корреляции разрезов. На основании одного и того же порядка (гомотаксиса) комплексов фауны и флоры в разных разрезах производится сопоставление соответствующих друг другу по положению (гомотаксальных) комп­лексов. Возможно применение понятия гомотаксальности при сопоставлении разрезов по любым признакам.

Третий принцип - хронологической взаимозаменяемости признаков. Этот принцип позволяет подменять так называемые несамостоятельные признаки (редкие, устанавливаемые от случая к случаю, - например, находки ископаемой фауны, которые могут быть лишь в отдельных точках слоя) самостоятельными (например, литологическими). Можно прослеживать слой по латерали, руководствуясь самостоятельными (литологическими) признаками и лишь учитывать редкие неса­мостоятельные (палеонтологические). Нужно отметить, что несамостоятельные признаки более важны, чем самостоятельные, но заменяются последними для прослеживания пород определенно­го стратиграфического уровня.

Существуют и другие важные положения стратиграфической корреляции. Например, прави­ло, сформулированное Н.А.Головкинским в 1868 г. Согласно правилу Головкинского, в непрерыв­ном разрезе осадочных толщ друг над другом отлагаются осадки, которые могут образоваться ря­дом (по латерали) на поверхности суши или на дне бассейна седиментации. Поэтому при транс­грессии или регрессии моря смена осадков по вертикали соответствует их горизонтальной зональ­ности. Таким образом, в каждой осадочной толще уверенно можно считать одновозрастными лишь те осадки, которые простирались параллельно береговой линии древнего бассейна.-

Биостратиграфическое расчленение и корреляция разрезов основаны на правиле В.Смита, со­гласно которому одновозрастные осадки содержат одни и те же или близкие остатки ископаемых организмов. С этим правилом связан дополняющий его и упомянутый выше принцип Гексли - ис­копаемые фауны и флоры сменяют друг друга в определённом порядке. Наряду с перечисленными при относительной геохронологии используются ещё два правила, сформулированные в XVIII столетии Дж. Хаттоном (Геттоном). Одно из них - "закон пересечений": секущая магматическая порода всегда моложе той породы, которую она рассекает, и другой - "закон включений": включе­ние всегда старше вмещающей породы.

Стратиграфические подразделения, как всякие материальные объекты, реальны и неповтори­мы в геологической истории земной коры.

Одна из важнейших задач стратиграфии - определение возраста стратонов (т.е. подразделе­ний разного уровня - слоев, пачек, толщ и т.п.). Без реального представления о возрасте Земли,


продолжительности геологических событий невозможны любые историко-геологические реконст­рукции. Для выяснения возраста в геологии существуют два различных направления: относитель­ное и абсолютное геологическое летосчисление (геохронология). Относительное летосчисление определяет возраст геологических объектов и последовательность их образования стратиграфи­ческими методами. Абсолютное - устанавливает время возникновения горных пород, проявления геологических процессов, их продолжительность в астрономических единицах (годах) радиологи­ческими методами.

ОТНОСИТЕЛЬНАЯ ГЕОХРОНОЛОГИЯ

Относительная геохронология (летоисчисление) разрабатывается при помощи палеонтологи­ческих (биостратиграфических) и непалеонтологических методов стратиграфии. Для позднего до­кембрия и фанерозоя ведущими, безусловно, являются палеонтологические методы. Одной из за­дач стратиграфии является расчленение осадочных и вулканогенных толщ в обнажении или в раз­резе скважины на отдельные стратоны, что осуществляется различными способами и по различ­ным признакам. При этом стремятся выделить эти стратоны в разрезе таким образом, чтобы они узна­вались и другими исследователями. Выделенные в обнажении (скважине) слои объединяются в пачки, толщи. В дальнейшем слои, пачки, толщи одного обнажения (скважины) сравнивают с подобными подразделениями другого обнажения (скважины) и устанавливают корреляционные уровни.

Палеонтологические методы (биостратиграфия)

Существует целая группа палеонтологических методов (методов биостратиграфии) для рас­членения и определения относительного возраста горных пород (по принципу Н.Стенона "стар­ше" - "моложе").

Органический мир Земли непрерывно и необратимо изменялся, поэтому каждому отрезку геологического времени отвечают характерные только для него растения и животные. Значит, од-новозрастные отложения близкого происхождения содержат сходные комплексы органических ос­татков. Следовательно, слои можно сравнивать по их палеонтологической характеристике. В осно­ве палеонтологических методов лежит закон Л.Долло о необратимости эволюции органического мира. Организм никогда не сможет вернуться к предковому состоянию, даже если он окажется в обстановке, близкой к условиям обитания предков. Другими словами, в истории развития организ­мов не может быть повторения одинаковых растений и животных. Вид или другой таксон суще­ствует во времени непрерывно и, раз исчезнув, не может появиться вновь (Ч.Дарвин). Одинаковые условия обитания могут привести к внешнему, морфологическому сходству представителей раз­ных типов или классов (рыбы - ихтиозавры - дельфины, кораллы - рудисты и др.). Такое явление называется конвергенцией.

Значение различных групп фауны для биостратиграфии неодинаково (рис. 1). Есть группы, позволяющие проводить планетарные корреляции. Например, раннекембрийские археоциаты, ор­довикские и силурийские граптолиты, мезозойские аммониты. Эти группы называют архистратиг­рафическими или руководящими формами. Это преимущественно планктонные и нектонные фор­мы, быстро расселявшиеся по всему свету. Другие группы, главным образом бентосные или дон­ные организмы, распространявшиеся более широко в личиночной стадии, менее пригодны для ши­рокой корреляции, но они играют ведущую роль в региональной биостратиграфии. Для исследова­ния закрытых районов, изучаемых при помощи буровых скважин, огромное значение приобретают микроскопические органические остатки (микрофоссилии) животного, растительного происхожде­ния и даже неясного систематического положения. К микрофоссилиям относятся раковины и ске­леты мелких животных (фораминиферы, радиолярии, остракоды), некоторые одноклеточные водо­росли (кокколитофориды, диатомовые и др.), споры и пыльца растений, мелкие фрагменты скеле­та (конодонты, сколекодонты, чешуйки рыб), спороморфные и другие биогенные образования.



 

I--- Г—I---- 1--- 1--- 5-- 4---- 1--- 1--- 1-- 1 ;;;;:: :;;;Ь--

Диатомовые и силикофлагелляты ____ I____ I . .1__________ 1 . . I,

 


Рис. 1. Стратиграфическое значение главных групп морских беспозвоночных в фанерозое (П.Рич и др., 1997)

Научно-технический прогресс XX в. оказал заметное влияние и на развитие палеонтологии. Новые приборы и аппаратура позволили усовершенствовать способы извлечения органических остатков из горных пород и методы их изучения. Все больше групп организмов привлекается на службу биостратиграфии. Для определения геологического возраста биостратиграфия использует следующие методы: руководящих ископаемых, комплексного анализа, количественный (процент-но-статистический), филогенетический, палеоэкологический.

Метод руководящих ископаемыхсостоит в том, что одновозрастными считаются отложе­ния с одинаковыми руководящими формами. Длительное время этот метод был основным. Он сыграл выдающуюся роль в установлении большинства систем, отделов, а впоследствии ярусов на всех материках, в значительном удалении от стратотипических районов и. зачастую при невысо­кой в то время геологической изученности.


Под руководящими ископаемыми подразумевают органические остатки, принадлежащие груп­пам, которые существовали короткий промежуток времени, но успели за небольшой срок рассе­литься на значительной территории и в большом количестве. Следовательно, руководящие ископа­емые должны иметь широкое горизонтальное и узкое вертикальное распространение, встречаться часто и в большом числе экземпляров, а также легко распознаваться. Многие виды вымерших организмов удовлетворяют этим требованиям. Например, брахиоподы Obolus apollinis E i с h w a 1 d характерны для тремадокского яруса ордовика, брахиоподы Choristites mosquensis Fischer-для московского яруса карбона, аммонит Cadoceras elatmae N i k i t i n характерен для келловейс-кого яруса юрской системы. Руководящими могут быть роды и даже некоторые более крупные си­стематические группы (семейства, отряды, классы). Так, археоциаты жили только в раннем кембрии, швагерины (фораминиферы) - в ранней перми, цератиты (аммоноидеи) - только в конце перми и в триасе.

В настоящее время, применяя метод руководящих ископаемых, учитывают образ жизни орга­низмов, зависящий от среды обитания, ограничивающий их пространственное распространение. Например, среднекембрийские трилобиты рода Paradoxides найдены во многих регионах - в Ев­ропе, Сибири, Средней Азии, Монголии, Китае, Австралии, Антарктиде только в морских отложе­ниях. Брахиоподы Conchidium knighti S о w e r b у встречаются в лудлове (верхний силур) Се­верной Америки, Британских островов, Прибалтики, Приднестровья, Урала, Новой Земли, Сред­ней Азии, Западного Саяна, Алтая и Северо-Востока России. Однако везде раковины этого вида обнаружены в определенном типе карбонатных отложений. Когда под действием трансгрессий и регрессий колеблется положение береговой линии, перемещаются и фации, с которыми переселя­ются организмы. При восстановлении прежней обстановки обитания они могут возвратиться, тог­да в разрезе встречаются очень сходные руководящие ископаемые. Такое явление называется рекурренцией, фауны - рекуррентными, и процесс этот может быть неоднократным (рис. 2).


Рис. 2. Схема, показывающая появление рекуррентных комплексов фауны в разновозрастных, но одинаковых по литологическим признакам осадках. По Р.Муру (1948): а - комплекс фауны в черных сланцах, характерный для слоя I, повторяется без существенных изменений выше по разрезу (слои 2 и 3); б- непрерывность накопления черных сланцев в условиях многократного перемещения зоны седиментации

Наряду с широко распространенными (космополитными) видами существовали виды, оби­тавшие на ограниченной площади (эндемичные). Так, в силуре юга Сибири и Монголии много­численны находки брахиопод тувелл (Tuvaella). На этой территории тувеллы являются руководя­щими, занимая определенный интервал разреза, но провести по ним корреляцию с разрезами си­лура других регионов невозможно, так как из-за своего локального распространения они нигде больше не встречены.

Метод комплексного анализаорганических остатков заключается в выяснении распределе­ния всех окаменелостей в разрезах, установлении смены комплексов и прослеживании выделен­ных комплексов от разреза к разрезу. Метод хорошо иллюстрируется на графиках. Названия орга­нических остатков располагают в общем списке окаменелостей в порядке их появления в разрезе, отмечая линиями интервал, на котором встречается каждая форма. На получившемся графике -"лесенке" ступени показывают смену комплексов во времени. ,.

Так, на графике (рис. 3,а) видно, что в однообразной по литологии толще пород сменяются пять палеонтологических комплексов. В них присутствуют формы, не выходящие за пределы ин-


Рис. 3. Выделение разновозрастных палеонтологических комплексов (заимствовано у Е.В.Владимирской и др., 1985)

тервала, доживающие, исчезающие в его конце, появляющиеся и проходящие. Устойчивость выде­ленных комплексов проверяется в нескольких разрезах. Комплекс называется по типичному виду (вид-индекс). Этот метод позволяет установить естественные рубежи смены фауны и флоры. При его применении также необходимо анализировать фациальные особенности разреза. На рис. 3,6 все семь пачек слоев имеют собственный набор окаменелостей, однако легко заметить их повто­рение в пачках 1 и 3; 2 и 4; 5 и 7, что связано с близостью фаций. Таким образом, в разрезе при­сутствуют уже не семь палеонтологических комплексов, а только два (пачки 1-4; 5-7).

При комплексном анализе учитывается и количественная характеристика фауны. Увеличение численности показывается на графике утолщением соответствующих линий. В рассмотренном примере по этому признаку выделяется пачка 2 - своеобразный маркирующий уровень. Графики распространения форм в разрезе чаще составляются отдельно для каждой широко распространен­ной группы организмов и затем сравниваются.

Количественные методы корреляциизаключаются в использовании математического аппа­рата для анализа палеонтологических комплексов. В наипростейшей форме метод состоит в срав­нении изучаемого слоя со слоями опорного разреза по содержанию общих окаменелостей. Напри­мер, в каком-либо исследуемом слое присутствует 5% видов слоя А; 15% - слоя Б; 50% - слоя В; 18% - слоя Г; 12% - слоя Д. По наибольшему содержанию общих видов изучаемый слой сопостав­ляют со слоем В. Сравнивают слои и пачки по специально разработанным коэффициентам сход­ства. Эти методы носят формальный характер; они применяются в комплексе с другими методами, таккак одновозрастные, но разнофациальные комплексы могут иметь мало общих форм.


Филогенетический методзаключается в выяснении смены родственных организмов во вре­мени, он основывается на принципах эволюционного развития. Полагают, что потомки устроены более прогрессивно, чем предки, и их остатки будут встречаться в более молодых отложениях. Так, хорошо известна история развития аммоноидей от палеозойских гониатитов с простой пере­городочной линией до мезозойских аммонитов с очень сложной линией. Чтобы применить фило­генетический метод, надо выяснить филогенез конкретной родственной группы, т.е. установить, когда появились данные организмы, сколько времени они существовали, кто и какие были их предки, кто стали потомками и как они в свою очередь развивались.

Выявленные родственные связи можно изобразить в виде схемы филогенетических взаимоот­ношений (рис. 4). При расчленении разрезов особое внимание следует обратить на момент появ­ления новых видов, что позволяет определять границы выделяемых стратиграфических подразде­лений. Применение филогенетического метода требует максимальной тщательности исследований и высокой квалификации палеонтолога.

Рис. 4. Схема филогенетических взаимоотношений видов нуммулитов (подрод Nummulites). По Г.И.Немкову, с упрощением

Палеоэкологический методразработан Р.Ф.Геккером при изучении верхнедевонских отло­жений Главного девонского поля. Учитывая зависимость фаунистических комплексов от фациальных условий, этот метод изучает связи организма с окружавшей его как органической, так и неор­ганической средой обитания. Фациальные изменения приводят к тому, что одновозрастные фаунистические комплексы резко различаются, и наоборот, при сходной фациальной обстановке созда­ются близкие сообщества организмов, хотя они имеют различный возраст. Палеоэкологический метод позволяет проследить постепенную смену фациальных фаунистических комплексов в про­странстве и таким образом сопоставить разнофациальные отложения.

Современная биостратиграфия стремится использовать все палеонтологические методы для более детального расчленения и корреляции пород и определения их возраста.


– Конец работы –

Эта тема принадлежит разделу:

ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ

В М Подобина С А Родыгин ИСТОРИЧЕСКАЯ... МЕТОДЫ ВОССТАНОВЛЕНИЯ ПАЛЕОГЕОГРАФИЧЕСКИХ ОБСТАНОВОК УЧЕНИЕ О...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: СТРАТИГРАФИЧЕСКИЙ МЕТОД

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ
Томск - 2000 Учебное пособие

Непалеонтологические методы
Непалеонтологическими методами стратиграфии являются литологические, геофизические, в т.ч. палеомагнитный, общегеологические методы, а также ритмостратиграфия и климатостратиграфия.

УЧЕНИЕ О ФАЦИЯХ
  Одна из важных задач исторической геологии - восстановление физико-географических обстановок, существовавших в определенный этап геологического прошлого, и их изменений с те­чением

Основные группы фаций
Первая наиболее детальная и полная классификация морских и континентальных фаций по четырем соподчиненным категориям (фация - сервия - нимия - формация) была предложена Д.В.Наливкиным (1955). Се

Фации бассейнов ненормальной солености
Осолоненные и солоноватоводные (опресненные) бассейны часто возникают на окраинах континентов, где утрачивается либо затрудняется связь с океаном или происходит смешивание пресных вод с морскими. Э

Континентальные фации
Континентальные фации генетически очень разнообразны и в большой степени зависят от рельефа местности, тектонических движений, многих химических факторов и т.д. Особую роль играют климатические усл

МЕТОДЫ ВОССТАНОВЛЕНИЯ ТЕКТОНИЧЕСКИХ ДВИЖЕНИЙ ПРОШЛОГО
Тектонические движения являются одним из важнейших факторов в развитии геологических процессов, изменяющих лик Земли. Они приводят к преобразованию земной коры, изменяют фор­мы рельефа поверхности,

МЕЖДУНАРОДНАЯ ГЕОХРОНОЛОГИЧЕСКАЯ ШКАЛА
Основные подразделения международной стратиграфической шкалы, на базе которой в даль­нейшем была создана геохронологическая шкала, были выделены в Западной Европе к середине XIX в. Все они вначале

Глобальная шкала четвертичной системы
 

ГАЛАКТИЧЕСКАЯ ХРОНОМЕТРИЧЕСКАЯ ШКАЛА
В основе хронометрической шкалы, в отличие от хроностратиграфической (геохронологичес­кой), лежит разделение времени на равные интервалы, в идеале кратные некоторым круглым зна­чениям, например, 10

ПЕРИОДИЧЕСКИЕ ГЕОЛОГИЧЕСКИЕ СОБЫТИЯ И ИХ ВЛИЯНИЕ НА ВЫМИРАНИЕ И ПОЯВЛЕНИЕ ОРГАНИЗМОВ
Земля - динамично, но отнюдь не хаотично развивающийся объект. Ученые заметили, что многие геологические процессы протекают с определенной периодичностью. По мнению Е.Е.Милановского (1995), существ

ГИПОТЕЗЫ О ПРОИСХОЖДЕНИИ ЗЕМЛИ
Земля - небольшая планета Солнечной системы (средний радиус 6371 км), третья от Солнца, одна из девяти планет, входящих в эту систему. История Земли тесно связана с происхождением и развит

ЛУННАЯ СТАДИЯ РАЗВИТИЯ ЗЕМЛИ
Планетезимали, образовавшие Землю, под влиянием столкновений друг с другом и гравита­ционных сил расплавлялись, сформировав горячее ядро. Температура в нем поддерживалась и возрастала благодаря рад

ОСНОВНЫЕ СТРУКТУРНЫЕ ЭЛЕМЕНТЫ КОНТИНЕНТАЛЬНОЙ КОРЫ
Орогенные области (складчатые пояса) и платформы представляют главнейшие элементы со­временной структуры континентов. Они сформировались в результате длительного геологического развития соответству

ОСОБЕННОСТИ СТРОЕНИЯ ОКЕАНИЧЕСКОЙ ЗЕМНОЙ КОРЫ
Длительное время считалось, что океаническая кора принципиально не отличается по строе­нию от континентальной: океаны (кроме Тихого) представляют собой временно опущенные по разломам блоки, где иде

ОСОБЕННОСТИ РАЗВИТИЯ ЗЕМЛИ В ДОКЕМБРИИ
Термин "докембрий" очень удобен тем, что охватывает весь период геологической истории Земли с тех пор, когда на ней начали происходить геологические процессы, и до начала кембрия. Этот от

АРХЕЙСКИЙ АКРОН (АРХЕЙСКАЯ АКРОТЁМА)- AR
  Архейский акрон продолжался свыше 1,5 млрд. лет, хотя точно длительность его неизвестна и нижняя граница не установлена. Она определяется условно возрастом наиболее древни

Общая характеристика
Возрастная граница между ранне- и позднеархейским зонами проводится на уровне 3.150 млн. лет. Самые древние образования иногда называют "катархей" (от греч. ката - внизу, термин Я.

Органический мир
О зарождении жизни и самых ранних этапах ее развития подробно говорилось в главе 5. По»-.видимому, уже ранее 3.500 млн. лет, в раннем архее, появились настоящие живые организмы -прокариоты (

Структуры земной коры и породообразование
Согласно схеме Л.И.Салопа (1982), в архейском акроне выделяются шесть диастрофизмов: готхобский второго порядка (-4000 млн. лет), саамский первого порядка (3750-3500 млн. лет), бе-лингвийский, сваз

Физико-географические условия
Особенности метаосадочных пород нижнего архея указывают на существование горячей гид­росферы. Изучение изотопного состава кремнистых пород, в частности отношений дейтерия к во­дороду и изотопов

Общая характеристика
Позднеархейский эон охватывает время 3.150-2.600 (по другим данным 2500) млн. лет. Образова­ния верхнеархейской эонотемы резко отличаются от нижнеархейской, знаменуя собой начало нового крупного эт

Органический мир
К позднему архею создались условия, более благоприятные для существования и размноже­ния организмов: снизилась температура воды, уменьшилась ее кислотность и химическая агрес­сивность. В верхнеархе

Структуры земной коры и породообразование
Во всех районах зеленокаменные породы верхнего архея развиты в виде узких, часто непра­вильных по форме участков, представляющих структуры геосинклинального типа, разделенные обширными полями глубо

Физико-географические условия
По изотопному составу кислорода и отношению дейтерия к водороду в гидроксиле кремния раз­личных пород верхнего архея температура воды составляла примерно от 90 до 65°С в конце зона. Атмосф

ПРОТЕРОЗОЙСКИЙ АКРОН (АКРОТЕМА)- PR
Термин "протерозойская группа" (греч. протерос - первичный, зоэ - жизнь) был предложен английским ученым А.Седжвиком в 1887 г. для обозначения всех докембрийских образований

Общая характеристика
Раннепротерозойский зон охватывает события от конца кеноранского (беломорскогоJ диаст-рофизма (2600 млн. лет) до конца позднекарельского (выборгского) диастрофизма (1600-1650 млн. лет). Этот отрезо

Органический мир
Вметаосадочных нижнепротерозойских образованиях часто встречаются микроскопические прокариоты и продукты их жизнедеятельности (микрофитолиты). Особенно много фитолитов в средней и

Структуры земной коры и породообразование
На протяжении раннекарельской эры выделяются три тектонических цикла (диастрофизма), связываемые с тремя интервалами подъема термального фронта, происходившими примерно че­рез 200 млн. лет. Два ран

Структуры земной коры и породообразование
Время формирования верхнекарельской эратемы - 1900-1650 млн. лет. Отрезок геологической истории с 1900 до 1600-1650 млн. лет, согласно действующей геохро­нологической шкале (табл. 1, цв. в

Физико-географические условия раннего протерозоя
Соотношение изотопов кислорода в кремнистых породах Австралии указывает на среднюю температуру мелководного моря в середине раннего протерозоя порядка 60°С. Широкое развитие карбонатных пород свиде

Общая характеристика
Позднепротерозойский эон продолжался с 1650 до 570 млн. лет. Большую его часть составля­ет рифей, ранг которого не совсем ясен, последние 80-100 млн. лет - венд, продолжительность ко­торого соответ

Органический мир
Важнейший рубеж в развитии органического мира совпадает с началом позднего протерозоя, когда повсеместно появились достоверные эукариоты - организмы, клетки которых имели обо­собленные ядра. Эукари

Структуры земной коры и породообразование
Вслед за позднекарельским этапом дробления земной коры, подъема термального фронта, мощными излияниями кислых лав, в раннем рифее начался интенсивный процесс формирования крупных платформ в граница

Условия осадконакопления
Терригенные породы: псефиты, псаммиты, глинистые породы; много красноцветов. Наблю­даются признаки мелководья. В позднем рифее - много медистых песчаников. Карбонатные породы: мощные мелко

Физико-географические условия
Судя по отношениям изотопов кислорода в породах надсерии Белт США, температура зем­ной поверхности 1300-1200 млн. лет назад была в пределах 40-50°С (в PR, t= 60°C). Понижение температуры ско

Общая характеристика
К венду относятся различные геологические образования, которые возникли после окончания рифея и до начала кембрийского периода (650-570 млн. лет). Отложения, относящиеся к венду, обозначаются или к

Органический мир
В венде начался третий важнейший этап развития органического мира докембрия- этап ста- ,#овления основных типов животного мира, и прежде всего многоклеточныд. Вендская флора и фау

Структуры земной коры и осадконакопление
Отложения венда известны на всех платформах, особенно на древних - Восточно-Европейс­кой и Сибирской. Миогеосинклинальные фации выделены во многих складчатых поясах. В эвгео-синклинальных областях

Физико-географические условия
Рубеж рифея и венда является началом эпохи материковых оледенений, которые привели к глобальной регрессии. Следы последующего значительного потепления также имеют планетарное распространение.

ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ ДОКЕМБРИЯ
Распределение месторождений полезных ископаемых по времени образования весьма нерав­номерное. В раннем архее формируется немного месторождений полезных ископаемых. Так, с иенгрским комплексом связа

ПАЛЕОЗОЙСКАЯ ЭРА (ЭРАТЕМА)- PZ
Палеозойская эра начинает новый эон в истории Земли - фанерозой (время явной жизни), объединяющий палеозойскую, мезозойскую и кайнозойскую эры. Название "палеозойская серия" впервые было

Органический мир
Растительный мир представлен многочисленными и более разнообразными, чем в протеро­зое, водорослями. Характерны, как и ранее, находки микрофоссилий, называемых акритархами. В кембрии найде

Структуры земной коры и палеогеография
К началу кембрия многие районы земной коры оказались приподнятыми над уровнем моря. Существовали древние платформы и геосинклинальные пояса. Складчатые области (байкальской складчатости) - байкалид

История развития платформ
Восточно-Европейская (Русская) платформа Наиболее полные разрезы кембрия обнажаются на южном и северном берегах Финского за­лива (см. схему II, цв. вкл.). Скважинами кембрийская сис

Сибирская платформа
Прогибание Сибирской платформы было намного интенсивнее. За исключением щитов (Ана-барского и Алданского) вся платформа была покрыта кембрийским морем. Наиболее широко рас­пространены нижнекембрийс

Северо-Лмериканская платформа
Отложения кембрия представлены только средним и верхним отделами. Среднекембрийские отложения развиты на крайнем западе, а также юге и представлены песчаниками, алевролитами, аргиллитами и известня

Гондвана
Гондвана представляла собой материк, который подвергался процессам денудации. Только по окраинам отмечаются небольшие по размерам трансгрессии. Морские осадки кембрия выделяются в Южн

Атлантический геосинклинальный пояс
В строении Атлантического геосинклинального пояса к началу кембрия выделяются две обла­сти: 1) Северо-Атлантическая, или Грампианская, включающая восточное побережье Гренландии, Север

Полезные ископаемые
Кембрийский возраст имеют нефтеносные горизонты месторождений Прибалтики и Иркутс­кого бассейна. В основном к кембрию и ордовику приурочены продуктивные горизонты гигантс­кого месторождения

Органический мир
В отличие от кембрия в ордовике жизнь была значительно разнообразнее. В растительном мире господствовали водоросли, в том числе зеленые. Представитель зеленых водорослей (или цианобионтов?) - род

Структуры земной коры и палеогеография
В ордовике существовали те же платформы и геосинклинальные пояса, что и в конце кемб­рийского периода. В геосинклинальных прогибах продолжалось интенсивное погружение, что благоприятс

Восточно-Европейская (Русская) платформа
Отложения ордовика распространены там же, где и кембрийские, то есть в Прибалтике, При­днестровье и Московской синеклизе, и представлены всеми тремя отделами. Залегают они со стра­тиграфическим нес

Сибирская платформа
Ордовик занимает западную часть платформы, обнажается по окраинам Тунгусской синекли-зы и на юго-западе платформы. Разрезы различаются по литологии и палеонтологической харак­теристике. Наблюдается

Гондвана
В южно-американской части Гондваны в ордовике господствовали поднятия. Морские обло­мочные отложения встречаются на крайнем западе по границе с Восточно-Тихоокеанской геосин­клинальной областью. Пе

Северо-Атлантический геосинклинальный пояс
Грампианская геосинклинальная область. Грампианская геосинклиналь. Впределах этой геосинклинали накапливались мощные толщи осадочных и вулканогенных по­род. Разрез ордовика Уэл

Урало-Монгольский геосинклинальный пояс
Алтае-Саянская геосинклинальная область. Салаирский цикл тектогенеза, проявившийся в этой области в среднем кембрии, стабилизировал ее не полностью. Геосинклинальные условия в ордовике восст

Средиземноморский геосинклинальный пояс
В Европейской геосинклинальной области отложения ордовика распространены шире кемб­рийских. Они известны на севере Европы, где представлены морскими песчаниками, глинистыми сланцами с прослоями изв

Полезные ископаемые
В ордовике известны продуктивные горизонты Мидконтинента США (штаты Канзас и Окла­хома), которые дают треть годовой добычи нефти. В Алжирской Сахаре в кембрии и ордовике от- кр

Органический мир
В силурийском периоде продолжалось дальнейшее усложнение и совершенствование органи­ческого мира, особенно животного. Из растений в морях широко распространены водоросли, а при­брежные участки в по

Структуры земной коры и палеогеография
Силурийский период - заключительный этап каледонской эпохи тектогенеза. С середины и до конца силура во многих геосинклинальных областях неоднократно происходили мощные складкообразовательные проце

Восточно-Европейская платформа
Обнажения силурийских отложений известны в Прибалтике и в Приднестровье. Это суще-ственно карбонатные фации с разнообразной фауной, представляющие полный разрез силура, мощности которого увеличиваю

Сибирская платформа
Силурийские отложения распространены на западной половине платформы и в бассейне р.Вилюй. Обнажаются по долинам рек на юге и северо-западе платформы. Опорный разрез силу­ра известен по р.Мойеро. Зд

Северо-Американская платформа
Эта платформа в начале силура испытала кратковременное поднятие в результате проявления таконской фазы складчатости в Аппалачской геосинклинали. Регрессия сменилась трансгрессией с

Гондвана
Южные материки в силуре по-прежнему стоят выше уровня моря, и силурийские осадки не­значительны, но там, где они имеются (по периферии Гондваны), представлены терригенными об­разованиями.

История развития геосинклинальных поясов Северо-Атлантический геосинклинальный пояс
Грампианская геосинклинальная область. Грампианская геосинклиналь. Раз­рез силура Уэльса - стратотипической местности, где была выделена силурийская система, можно увидеть на схеме III, цв.

Полезные ископаемые
Залежи каменной соли, промышленные месторождения нефти и газа известны на Северо-Американской (Канадской) и Сибирской платформах. В силуре образовались месторождения ооли­товых

Органический мир
Органический мир девонского периода был богат и разнообразен. Значительного прогресса достигла наземная растительность. Начало девонского периода характеризовалось широким рас­пространением "п

История развития платформ
Северо-Атлантическая платформа (Лавренция) Эта суперплатформа объединяет Северо-Американскую платформу, каледониды Грампианс­кой герсинклинали и Восточно-Европейскую (Русс

История развития геосинклинальных поясов
Врезультате прошедшей каледонской складчатости перестала существовать Грампианская геосинклинальная область, каледониды сократили площадь других геосинклиналей, разделили геосинкли

Средиземноморский геосинклинальный пояс
Этот пояс испытывал в девоне значительное интенсивное опускание. В центральной части Западной Европы оставался срединный массив - Франко-Чешский или Молданубское поднятие (глыба). Название происход

Тихоокеанский геосинклинальный пояс
В Западно-Тихоокеанской геосинклинальной области в девоне формировались три типа раз­резов: эвгеосинклинальный, миогеосинклинальный и характерный для срединных массивов. В эвгеосинклинальн

Полезные ископаемые
Несмотря на бедность наземной растительности, развитие ее обусловило образование в де­вонском периоде первых в истории Земли промышленных залежей каменного угля. Они известны в России в Кузн

Органический мир
В каменноугольном периоде широко развивается наземный растительный мир. Он представ­лен различными группами споровых растений: членистостебельными, плауновидными и папорот­никами (рис. 55, 56, цв.

Структуры земной коры и палеогеография
В карбоне в пределах современных континентов продолжали существовать Лавренция, Си­бирская и Китайская платформы и суперплатформа Гондвана. Между ними располагались Аппа-лачская геосинклиналь, Сред

Средиземноморский геосинклинальный пояс
Разрез карбона западно-европейских герцинид был изучен ранее, чем в других регионах, и поэтому стал эталонным при разработке стратиграфической схемы каменноугольной системы. Динант (турне, визе) пр

Тихоокеанский геосинклинальный пояс
В Западно-Тихоокеанской геосинклинальной области в карбоне выделяются те же три типа разрезов, что и в девоне. Эвгеосинклинальный тип разреза характерен для внутренней части гео­синклинали,

Полезные ископаемые
Главная особенность каменноугольного периода - обширное угленакопление, которое проис­ходило как в краевых и межгорных прогибах герцинид, так и на платформах. Угли карбона состав­ляют почти

Органический мир
В пермском периоде органический мир приобрел своеобразные черты, хотя в самом начале периода он был во многом сходен с каменноугольным. С середины пермского периода характер наземной флоры

Структуры земной коры и палеогеография
В пермском периоде завершилась герцинская складчатость. Её последние фазы привели к от­миранию геосинклинального режима в оставшихся частях Урало-Монгольского пояса и Аппалачс-кой геосинклин

История развития платформ
Лавразия (Ангарида) Восточная Европа. Классической областью развития пермской системы в Лавразии являют? ся восточная часть Восточно-Европейской (Русс

Гондвана
Гондвана в пермском периоде увеличилась в размерах благодаря присоединению к ней герци-нид Южной Африки и Восточной Австралии. На Гондване продолжалось формирование континентальной гондван

Средиземноморский геосинклинальный пояс
В результате завершения герцинской складчатости пояс значительно сократился в размерах. Начиная с перми, его иногда называют геосинклинальной областью Тетис. На севере европейской части Тетиса, при

Тихоокеанский геосинклинальный пояс
Вовнешней зоне Западно-Тихоокеанской геосинклинальной области в пермском периоде про­должалось формирование МОЩНЫХ терригенных отложений, восточнее сменяющихся глинами, а по

Полезные ископаемые
Для пермского периода наиболее характерны угольные месторождения, на долю которых приходится около четверти мировых запасов. Это Печорский и Таймырский бассейны, верхние го­ризонты Минусинск

Структуры земной коры и палеогеография
В триасе существовали две суперплатформы: Лавразия и Гондвана и разделявшие их Тихоо­кеанский и значительно сократившийся после герцинской складчатости Средиземноморский (Те-тис) геосинклинальные п

Лавразия
Стратотипической областью развития триаса является Германская впадина (см. схему IX, цв. вкл.). Здесь нижний триас - пестрый песчаник - представлен красными и фиолетовыми песчани­ками, койгломерата

Органический мир
В юрском периоде архаичные формы палеозоя прекратили свое существование и органичес­кий мир принял типично мезозойский вид. В растительном мире господствовали различные груя-пы голосеменных: хвойны

Структуры земной коры и палеогеография
В юре продолжают существовать две крупные платформы: Лавразия и Гондвана и разделяю­щие их геосинклинальные пояса - Средиземноморский и Тихоокеанский. Юрский период по сравнению с триасовым называю

Историяразвития платформ; Лавразия
Осадконакопление в юре происходило не только на древних докембрийских платформах, но и в отдельных районах, снивелированных к этому времени герцинских горных сооружений, фор­мируя платформенный чех

Гондвана
В юрском периоде происходит распад Гондваны. Морские отложения занимают обширные территории в пределах Гондваны. Значительно расширяется "Мозамбикский рукав". Глубоковод­ным бурением уста

История развития геосинклинальных поясов Средиземноморский геосинклинальный пояс
В юре в пределах Средиземноморского геосинклинального пояса, значительно сократившего­ся после герцинской складчатости, обособляются две геосинклинальные области: Альпийско-Ги-малайская (Южная Евро

Тихоокеанский геосинклинальный пояс
На северо-западе Тихоокеанского геосинклинального пояса в юре, как и в триасе, существо­вали два геосинклинальных прогиба - Яно-Колымский и Анюйско-Чукотский, разделенные Омо-лоно-Колымским срединн

Полезные ископаемые
Преобладание влажного и теплого климата в течение большей части юры способствовало об­разованию бокситов а углей. Юрские бокситы известны на Урале, в Тургае, Средней Азии, на Ени­сейском кря

Органический мир
Меловой период завершает мезозойскую эру, и поэтому его органический мир несет все чер­ты, характерные для переходного этапа. Наиболее значительные изменения претерпевает расти­тельный мир суши. С

Структурыземной коры и палеогеография
По-прежнему существовала северная платформа Лавразия, усложненная к этому времени ря­дом опусканий. Более существенные погружения, сопровождаемые разломами, проявились на Гондване, на территории со

Евразия
Этот континент включал древние эпибайкальские платформы: Восточно-Европейскую, Си­бирскую и Китайскую, присоединенные к ним области каледонской и герцинской складчатости. Геологическая история этих

Северная Америка
Море мелового периода занимало обширную территорию к востоку от современных Скалис­тых гор, достигая края Канадского щита. Море наступало двумя встречными языками: с юга - из области Мексиканского

Части бывшей Гондваны
№ В раннем мелу все южные платформы, за исключением Австралии, сохранили приподнятое положение. Море было лишь на восточном побережье Африки, частично на Мадагаскаре, занима- ло больш

История развития геосинклинальных поясов
Средиземноморский геосинклинальный пояс В меловом периоде в пределах этого пояса выделяются три геосинклинальных области: Аль-пийско-Гималайская (Южная Европа, побережье Северной Аф

Полезные ископаемые
С континентальными отложениями мела связано около 21% мировых запасов углей. Это Лен­ский, Зырянский бассейны в России, месторождения запада Северной Америки и др. Залежи бок­ситов из

Структуры земной коры и палеогеография
В начале палеогена в Северном полушарии выделяются два крупных материка, соединявшихся в районе Берингова пролива: Евразияи Северная Америка.В Южном полушарии суще

История развития платформ
Большая часть Евразии составляла континент. Палеогеновое море проникло на запад и юг Европы и запад Азии. В пределах юга европейской части России палеогеновые отложения представлены терриг

Полезные ископаемые
В палеогене были сформированы месторождения бокситов приэкваториальных районов: Ав­стралии (п-ов Йорк), Гвинеи, Ямайки, Суринама, Гайаны, заключающие 95% запасов алюминие­вого сырья зарубежн

Органический мир
Неогеновые растения и животные по систематическому составу близки к современным, но географическое распределение их было несколько другим. Растительный мир по родовому и видовому составу и

Структуры земной коры и палеогеография
В начале неогена в северном полушарии существовали две огромные по размерам и сложные по структуре платформы: Евразияи Северо-Американская.Особенностью неогеновой

Полезные ископаемые
Наибольшее значение среди полезных ископаемых, связанных с неогеновыми отложениями, имеют нефть и газ. Около одной трети всех подсчитанных запасов нефти и газа - неогенового возраста.

Органический мир
Животный и растительный мир четвертичного периода близок к современному. Изменения, которые происходили в составе и расселении животных и растений, были связаны с изменениями природной среды, вызва

Природные условия
При характеристике природных условий четвертичного периода важное значение имеют два фактора. Это периодическое наступление ледниковых эпох и сменяющих их межледниковий. В течение четвертичного пер

Полезные ископаемые
Полезные ископаемые, которые приурочены к четвертичным отложениям, можно разделить на несколько генетических групп. Это разнообразные россыпи, руды осадочного происхождения, нерудные полезные ископ

Эпохи великих вымираний
В главе 2 уже говорилось о галактических циклах разной продолжительности, которым под­чинены различные события земной истории, в том числе вымирание и возникновение организмов. Эта точка зрения раз

ТЕКТОНИЧЕСКАЯ ПЕРИОДИЗАЦИЯ
Орогеническому этапу отвечает понятие о складчатости (диастрофизме, тектогенезе). Тер­мин "складчатость" не совсем удачен, поскольку собственно образование складок здесь процесс вт

И НАПРАВЛЕННОСТЬ РАЗВИТИЯ ЗЕМНОЙ КОРЫ.
ВАЖНЕЙШИЕ ГЕОТЕКТОНИЧЕСКИЕ ГИПОТЕЗЫ.................................236 ТЕКТОНИЧЕСКАЯ ПЕРИОДИЗАЦИЯ.........................................................................

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги