рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ЛЭП со стальными проводами

ЛЭП со стальными проводами - раздел Энергетика, ЛЕКЦИЯ 1. ОБЩАЯ ХАРАКТЕРИСТИКА СИСТЕМ ПЕРЕДАЧИ И РАСПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. МОДЕЛИРОВАНИЕ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ СИСТЕМ   Основное Достоинство Стальных Проводов - Их Высокие Механичес...

 

Основное достоинство стальных проводов - их высокие механические свойства. В частности, временное сопротивление на разрыв стальных прово­дов достигает 600-700 МПа (60-70 кг/мм2 ) и более. Поэтому стальные про­вода применяют при выполнении больших переходов через естественные препятствия (широкие реки, горные ущелья и т. п.).

Однако сталь обладает значительно более высоким электрическим сопро­тивлением (удельное сопротивление р достигает величины 130 Ом•мм2/км) по сравнению с медью и алюминием, которое зависит от сорта стали, способа изготовления провода и от величины тока, протекающего по проводу. По­этому передача больших мощностей на значительные расстояния затруднена вследствие больших потерь напряжения и электроэнергии.

При передаче по распределительным сетям 6,10 кВ небольших мощно­стей (до нескольких сотен кВт) в слабо загруженных низковольтных сетях монтируют ВЛ со стальными проводами. Кроме того, провода из стали (тро­сы) используют как элементы повторного заземления низковольтных сетей и устройств грозозащиты высоковольтных ВЛ.

Стальные провода изготавливают из оцинкованных проволок. Без оцинковки срок службы стальных проводов мал, провода ржавеют и стано­вятся непригодными для работы на воздушных линиях электропередачи.

Сталь - это ферромагнитный материал, и поэтому стальные провода обладают большой внутренней индуктивностью. Активные сопротивления стальных проводов, так же как и реактивные, зависят от величины проте­кающего в них тока. При токах, близких к нулю, когда магнитный поток в проводе очень мал, активное и омическое сопротивления проводов практиче­ски одинаковые. Разница между этими сопротивлениями тем больше, чем больше магнитная проницаемость стали и диаметр провода. Стальные прово­да на линиях переменного тока подвергаются постоянному перемагничиванию, что связано с затратами энергии, возрастающими с увеличением тока. Кроме того, растут потери на вихревые токи, и резко проявляется поверхностный эффект. Названные потери активной мощности учитывают соответст­вующими составляющими активного сопротивления стальных проводов:

Сталь обладает большей магнитной проницаемостью (> 1), чем цвет­ные металлы (медь и алюминий). Активное сопротивление переменному току ЛЭП со стальными проводами выше активного сопротивления ЛЭП того же сечения из меди или алюминия. Величина дополнительных потерь зависит от магнитного потока Ф в сечении провода, а магнитный поток определяется магнитной проницаемостью материала провода и напряжённостью маг­нитного поля H:

Ф=BF=HF,

где В - магнитная индукция, а F - площадь поперечного сечения провода.

Напряжённость магнитного поля пропорциональна току в проводе (H ~I),а магнитная индукция определяется как током, так и степенью на­сыщения стали. Поэтому при малых значениях тока магнитный поток, а зна­чит, и дополнительное сопротивление провода растут пропорционально его значению. При некоторой величине тока магнитная индукция становится практически постоянной величиной (насыщение стали), и сопротивление стабилизируется. При дальнейшем увеличении протекающего тока сопротив­ление начинает уменьшаться вследствие уменьшения магнитной проницае­мости стали. Кривые изменения активного сопротивления стальных однопроволочных и многопроволочных проводов от тока нагрузки представлены на рис. 4.8 (кривая 1).

Активное сопротивление стальных проводов зависит от многих факто­ров (химического состава стали, токовой нагрузки и др.), является очень сложной функцией и его трудно выразить математически. Для определения активных сопротивлений стальных проводов используют табличные данные, составленные на основании измерений для разных марок и сечений проводов в зависимости от величины тока.

Индуктивное сопротивление стального провода также определяется двумя составляющими: внешним индуктивным сопротивлением X0' и внут­ренним индуктивным сопротивлением X0'', Ом/км:

(4.31)


 
 

Внутреннее индуктив­ное сопротивление обуслов­лено магнитным потоком, замыкающимся внутри про­вода, и определяется магнит­ной проницаемостью, кото­рая, в свою очередь, зависит не только от конструкции и химического состава стали провода, но и от тока, проте­кающего в проводе:

Для определения внут­реннего индуктивного со­противления пользуются экспериментальными дан­ными, приведёнными в спра­вочной литературе, внешнее индуктивное сопротивление определяется по формуле (4.31)


Внутреннее индуктивное сопротивление стальных проводов по своей величине значительно превышает внешнее индуктивное сопротивление и значительно больше, чем у проводов из цветных металлов. У линии передачи с проводами из цветного металла индуктивное сопротивление в основном обусловлено внешним магнитным потоком.

На рис. 4.8 показаны для провода ПС 25 кривые изменения активного (резистивного) (кривая 1) и реактивного (кривая 2) сопротивлений в зависи­мости от величины переменного тока. Для сравнения слабовыраженная кри­вая 3 показывает изменение сопротивления провода постоянному току, а прямая 4 - индуктивного сопротивления для алюминиевых проводов.

Активные и реактивные сопротивления однопроволочного провода бы­стро растут с увеличением его диаметра. Поэтому в электрических сетях однопроволочные провода применяют с диаметром не более 5 мм. Провода с сечением 25 мм2 и выше выполняют многопроволочными.

Многопроволочные провода имеют значительно лучшие электрические характеристики, чем однопроволочные, и почти не зависят от сечения прово­да. В многопроволочных проводах благодаря воздушным промежуткам меж­ду отдельными проволоками, из которых свит провод, сопротивление маг­нитному потоку резко возрастает. Магнитный поток внутри провода умень­шается - уменьшаются активное и реактивное сопротивления провода. В це­лом удельные активное и реактивное сопротивления стальных проводов в не­сколько раз превышают аналогичные величины проводов из цветного метал­ла. Это означает, что в таких ЛЭП с увеличением тока нагрузки увеличивает­ся сопротивление стального провода, значительно выше потери напряжения и соответственно снижается пропускная способность электропередачи. Вследствие этих причин применение стальных проводов ограничено.

 

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИЯ 1. ОБЩАЯ ХАРАКТЕРИСТИКА СИСТЕМ ПЕРЕДАЧИ И РАСПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. МОДЕЛИРОВАНИЕ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ СИСТЕМ

План... Основные понятия и определения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ЛЭП со стальными проводами

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Характеристика системы передачи электрической энергии
  Основу системы передачи электрической энергии от электрических станций, её производящих, до крупных районов электропотребления или распределительных узлов ЭЭС составляют развитые се

Характеристика систем распределения электрической энергии
  Назначение распределительных сетей - доставка электроэнергии непосредственно потребителям напряжением 6-10 кВ, распределение электроэнергии между подстанциями 6-110/0,38-35 кВ район

Система передачи и распределения электрической энергии
  В п. 1.3 приведена характеристика систем передачи и распределения ЭЭ. Рассмотрим взаимосвязи этих систем на примере. В качестве примера рассмотрим упрощённую принципиальную

Номинальные напряжения элементов электрических сетей
  Каждая электрическая сеть характеризуется номинальным напряжением ,на которое рассчитывается её оборудование. Номинальное напряжение обеспечивает нормальную работу электропотребител

Режим нейтрали сетей до 1000 В с глухозаземленной нейтралью
Наиболее распространенные - четырёхпроводные сети трехфазного то­ка напряжением 380/220, 220/127, 660/380 (рис. 2.3) (числитель соответствует линейному напряжению, а знаменатель - фазному напряжени

Низковольтные сети с изолированной нейтралью
  Это трёхпроводные сети, которые нашли применение для питания осо­бо ответственных потребителей при малой разветвленности сетей при обес­печении в сетях контроля фазной изоляции. Это

Высоковольтные сети с изолированной нейтралью
  Потребитель включен на линейное напряжение, нейтраль и земля в симметричном режиме совпадают. Напряжение, которое должна выдержи­вать изоляция, - это напряжение между фазой и землей

Высоковольтные сети с компенсированной нейтралью
  Эти сети также относят к сетям с малым током замыкания на землю (рис. 2.9).    

Высоковольтные сети с глухозаземленной нейтралью
  К таким сетям относятся сети с номинальным напряжением 110 кВ и выше и большим током замыкания на землю (&g

Вопросы для самопроверки
1. Что такое номинальное напряжение? 2. Каков номинальный ряд напряжений электрических сетей? 3. Какова классификация электрических сетей по напряжению, охвату территории, назначе

ЛЕКЦИЯ 3. ПРИНЦИПЫ КОНСТРУКТИВНОГО ИСПОЛНЕНИЯ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ
  План 1. Назначение воздушных линий электропередачи. 2. Конструктивное исполнение воздушных линий. 3. Опоры ВЛ. 4. Провода ВЛ. 5. Грозоза

Воздушные линии электропередачи
  Воздушными называются линии, предназначенные для передачи и рас­пределения ЭЭ по проводам, расположенным на открытом воздухе и под­держиваемым с помощью опор и изоляторов. Воздушные

Кабельные линии электропередачи
  Кабельная линия (КЛ) - линия для передачи электроэнергии, состоящая из одного или нескольких параллельных кабелей, выполненная каким-либо способом прокладки (рис 3.12). Кабельные ли

Вопросы для самопроверки
  1. Как классифицируются линии электропередачи по конструктивному исполнению? 2. Какими факторами определяется выбор типа ЛЭП? 3.Каким требованиям должны удовле

Активное сопротивление
  Обусловливает нагрев проводов (тепловые потери) и зависит от мате­риала токоведущих проводников и их сечения. Для линий с проводами не­большого сечения, выполненных цветным металлом

Вопросы для самопроверки
  1.Для каких целей используют схемы замещения? Назовите преимущества и недостатки этих схем. 2. Какова физическая сущность активного сопротивления ЛЭП? 3. Как и в к

ЛЕКЦИЯ 5. ПАРАМЕТРЫ И СХЕМЫ ЗАМЕЩЕНИЯ ДВУХОБМОТОЧНЫХ ТРАНСФОРМАТОРОВ
  План 1. Назначение, условные обозначения, схемы соединения обмоток и векторные диаграммы напряжений трансформаторов. 2.Двухобмоточные трансформаторы.

Двухобмоточные трансформаторы
  При расчётах режимов трёхфазных электрических сетей с равномерной загрузкой фаз трансформаторы в расчётных схемах представляются схемой замещения для одной фазы.  

Виды и назначения устройств
  Рассматриваются устройства, компенсирующие реактивную мощность: статические конденсаторные батареи, шунтирующие реакторы, статические тиристорные компенсаторы (СТК) и синхронные ком

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги