рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Пассивные элементы

Пассивные элементы - Конспект Лекций, раздел Электротехника, Конспект Лекций по ТОЭ ГЛАВА 1 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ Основными Пассивными Элементами Электрической Цепи Являются Резистивные, Инду...

Основными пассивными элементами электрической цепи являются резистивные, индуктивные и емкостные. Рассмотрим их силовые характеристики при постоянном токе.

 

Электротехническое устройство, обладающее сопротивлением и применяемое для ограничения тока, называется резистором. (рис. 1.9).

 

Идеализированные модели резисторов называются резистивными элементами (при идеализации пренебрегают токами через изолирующие покрытия резисторов, каркасы проволочных резисторов и т. п.).

Основной величиной, характеризующей резистор, является его сопротивление R, которое определяется из соотношения:

, (1.15)

называемого законом Ома. Сопротивление измеряется в Омах:

[R] = [U\I] = В\А = Ом.

То есть сопротивлением в 1 Ом обладает проводник, в котором устанавливается ток в 1 А при напряжении 1 В.

Величина обратная сопротивлению называется проводимостью:

. (1.16)

 

Единица измерения – Сименс (См)

[g] = [1/R] = 1/Ом = См.

Напряжение между точками а-b в общем виде определяется:

, (1.17)

где - вектор напряжённости электрического поля.

Ток

, (1.18)

где - вектор плотности тока;

- вектор элемента поверхности объёма, который направлен в сторону нормали внешней по отношению к объёму.

Закон Ома в дифференциальной форме:

 

, (1.19)

 

где - удельная проводимость, определяемая по формуле:

, (1.20)

где - удельное сопротивление.

Сопротивление R, если его нужно найти по параметрам резистора, рассчитывается по формуле 1.7.

Вследствие того, что сопротивление R – элемент пассивный, электрическая энергия, поступающая в данный элемент, рассеивается в виде тепла и мощность потребления определяется по закону Джоуля –Ленца:

 

. (1.21)

 

При относительно небольших мощностях напряжение и ток регулируются при помощи переменных резисторов – реостатов. На схемах реостаты изображают так, как показано на рис. 1.10.

Принцип действия реостата состоит в следующем: при перемещении скользящего контакта по проволочной обмотке сопротивление реостата изменятся достаточно плавно.

К пассивным элементам относят также и индуктивный элемент - катушку индуктивностью L (Рис. 1.11).

Катушкой называется обмотка изолированного провода, намотанного на каркас или без каркаса, имеющая выводы для присоединения.

L – параметр, который определяет способность катушки создавать магнитное поле. Он зависит от геометрических параметров катушки, числа её витков и от магнитных свойств сердечника, на который намотана катушка.

Из-за появления магнитного поля цепь будет пронизываться магнитным потоком. Для характеристики катушки индуктивности, как элемента электрической цепи достаточно вычислить потокосцепление . Индуктивность L является коэффициентом пропорциональности между и I:

. (1.22)

Измеряется L – в Генри (Гн).

Если ток I будет изменяться во времени, по закону электромагнитной индукции в катушке наведётся Э.Д.С.

. (1.23)

Индуктивность можно менять, вводя на разные расстояния в катушку сердечник (максимальные L при случае, когда сердечник полностью находится в катушке).

В магнитном поле уединенной катушки индуктивностью L, по которой течёт ток I, запасается магнитная энергия:

. (1.24)

Отсюда

.

Катушки можно разделить на два вида: токовые, содержащие небольшое количество витков провода сечения, соответствующего силе проходящего тока, и катушки напряжения, содержащие большое количество провода небольшого сечения.

Последним из рассматриваемых нами пассивных элементов является ёмкость.

Между двумя любыми проводниками, разделёнными диэлектриком, существует электрическая ёмкость. Для создания определённого значения ёмкости служат конденсаторы (на рис. 3а изображён простейший плоский конденсатор).

На схемах конденсатор изображают как показано на рис. 3б. Если заряд на одной обкладке +q, на другой –q, то в пространстве между обкладками существует электрическое поле и между обкладками имеется напряжение U. Заряд q пропорционален U:

. (1.25)

 

 

Коэффициент пропорциональности С называют ёмкостью

.

Ёмкость зависит от геометрических размеров конденсатора и от диэлектрика между обкладками. Единицей ёмкости является Фарад (Ф). На практике ёмкостей в 1 Ф и больше не бывает, поэтому используют более мелкие единицы микро-, нано- и пикофарад: 1 мкФ=10-6 Ф; 1 нФ=10-9 ; 1пФ =10-12 Ф.

В конденсаторе ёмкостью С, между электродами которого действует напряжение U, запасена электрическая энергия:

. (1.26)

При изменении заряда q по конденсатору течёт ток:

 

. (1.27)

 

Отсюда, так как положительные направления I и U совпадают, следует, что:

 

. (1.28)

 

По своему устройству конденсаторы могут быть как постоянной, так и переменной ёмкости.

Конденсаторы постоянной ёмкости подразделяют в зависимости от применяемых в них диэлектриков на следующие основные виды:

1. Керамические - диэлектриком является керамика (обкладки керамических конденсаторов выполняют в виде тонких слоёв серебра, нанесённого на поверхность керамики методом вжигания);

2. Слюдяные - диэлектриком является слюда, (стабильный слюдяной конденсатор состоит из пачки слюдяных пластин, на каждую из которых нанесены обкладки серебра), которая неоднородна в своей структуре, поэтому такие конденсаторы нельзя считать достаточно надёжными в эксплуатации;

3. Бумажные – диэлектриком являются бумажные ленты из специальной конденсаторной бумаги, пропитанной вазелином, либо конденсаторным маслом (обкладки - ленты из металлической фольги толщиной 7-8 мкм);

4. Электролитические – конденсаторы, в которых вследствие химических реакций электролиза вокруг одной из обкладок, образуется слой окиси. В результате этого между этим слоем окиси и обкладкой появляется запорный слой, который является диэлектриком. Этот конденсатор работает только в цепях постоянного тока.

Кроме того встречаются другие виды конденсаторов, например, металлобумажные, плёночные и др.

 

– Конец работы –

Эта тема принадлежит разделу:

Конспект Лекций по ТОЭ ГЛАВА 1 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Кафедра ТОЭ... Конспект Лекций по ТОЭ... Уфа ОГЛАВЛЕНИЕ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Пассивные элементы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Активные элементы
  В линейных электрических цепях в качестве источников энергии различают источники Э.Д.С. и источники тока. Идеальный источник Э.Д.С. имеет неизменное Э.Д.С. и

ПРИМЕЧАНИЕ
Источник электрической энергии на схеме замещения может быть представлен как в виде источника Э.Д.С., так и в виде источника тока: . Эти два разнородных источника электрической эн

Основные законы и уравнения электрических цепей
Основными физическими законами, позволяющими описать любые режимы электрической цепи, являются законы Ома. 1. Закон Ома для участка цепи, не содержащего Э.Д.С., устанавливает связь между т

Метод контурных токов
  Метод расчета путём решения уравнений, основанных на законах Кирхгофа, рассмотренные выше, трудоёмок. Например, для цепи, имеющей шестнадцать ветвей, требуется решать систему шестна

Принцип наложения и метод наложения
Ещё один метод расчета линейных электрических цепей называется методом наложения. В его основе лежит принцип наложения, который можно сформулировать следующим образом: ток в любой ветви равен алгеб

Теорема взаимности
Теорема взаимности формируется таким образом: для любой линейной цепи с одним источником Э.Д.С. ток Ik в ветвях, вызванный Э.Д.С. Em, находящийся в m-ветви, будет равен

Теорема компенсации
  В любой электрической цепи сопротивление можно заменить Э.Д.С., численно равной падению напряжения на этом сопротивлении и направленной встречно току в этом сопротивлении. При такой

Линейные сложения в электрических цепях
  Если в линейной электрической цепи изменяется какая-либо величина (Э.Д.С. или сопротивление) в одной ветви, то две любые величины (токи и напряжения) двух любых ветвей связаны между

Метод узловых потенциалов
В тех случаях, когда в анализируемой схеме число узлов без единицы меньше числа независимых контуров, метод узловых потенциалов является более экономичным по сравнению с методом контурных токов.

Метод эквивалентного генератора
В практических расчётах часто нет необходимости знать режимы работы всех элементов сложной цепи, но ставится задача исследовать режимы работы одной определённой ветви. При расчёте сложной

Передача энергии от активного двухполюсника нагрузке
Если нагрузка подключена к активному двухполюснику (рис. 2.16), то по ней течёт ток: . и в ней выделяется мощность: , где R-сопротивление нагрузки; R

Преобразования в линейных электрических цепях
  1. Соединение резисторов. Существует два вида соединения резисторов: последовательное и параллельное (рис. 2.17).    

Синусоидальный ток и его основные характеристики
В настоящее время переменный ток находит широкое применение в технике, так как он легко трансформируется и передается на большие расстояния при высоком напряжении и малых потерях. Экономический эфф

Способы изображения синусоидальных величин
1. Графическое изображение синусоидальных величин. Для сравнения электрических величин, изменяющихся по синусоидальному закону, необходимо знать р

Пассивные элементы R, L, C в цепи синусоидального тока
  Резистивный элемент В электрической цепи с резистивным элементом R ток изменяется по синусоидальному закону с начальной фазой , то есть . (3.

Мгновенная и средняя мощности. Активная, реактивная и полная мощности. Измерение мощности ваттметром
  Если имеются законы изменения тока и напряжения   , (3.31) , (3.32)   то их произведение . (3.33) Мгновен

Треугольники сопротивлений, напряжений и мощностей
  В разделе 3.6 мы вывели выражение для нахождения полного сопротивления Z. По формуле 3.30 . Из этого следует, что модуль комплексного сопротивления: . (3

Топографическая и векторная диаграммы
  Каждая точка электрической схемы, в которой соединяются элементы схемы, имеет своё значение комплексного потенциала. Совокупность точек комплексной плоскости, изображающих

Резонанс напряжений
  Условием возникновения резонанса напряжений в последовательном RLC - контуре является равенство реактивных сопротивлений катушки и конденсатора. При значения противоположны

Резонанс токов
  Рассмотрим цепь с двумя параллельными ветвями на рис. 3.22. Такую цепь часто называют параллельным контуром. Условием возникновения резонанса является равенс

Частотные характеристики пассивных двухполюсников
  Как выяснили выше, входное сопротивление и входная проводимость двухполюсника являются функциями частоты ω. Под частотными характеристиками (ЧХ) понимают следующие типы характе

Условие передачи максимальной мощности от активного двухполюсника нагрузке
  Рассмотрим схему (рис. 3.26), содержащую источник энергии с Э.Д.С. , внутренним сопротивлением и сопротивлением нагрузки . Определим сопротивление подключенной нагрузки, при котором

Падение и потеря напряжения в линии передачи электроэнергии
  Рассмотрим схему передачи электроэнергии от генератора переменного тока к приёмнику через линию электропередачи (Л.Э.П.). Схема замещения представлена на рис. 3.28. Л

Индуктивно связанные элементы. Э.Д.С. взаимной индукции
  Если изменение тока в одном из элементов электрической цепи приводит к возникновению Э.Д.С. в другом элементе цепи, то говорят, что эти элементы индуктивно связаны друг с дру

Последовательное соединение индуктивно связанных элементов цепи
Две катушки с сопротивлениями R1 и R2, индуктивностями L1 и L2 и взаимной индуктивностью М соединены последовательно. Возможны два вида их включен

Эквивалентная замена индуктивно связанных цепей
  Часто для упрощения расчетов часть схемы заменяют эквивалентной схемой без индуктивных связей. Такой приём ещё называют развязкой индуктивных связей. Рассмотрим экви

Соединение звездой
Нагрузка в трёхфазной цепи может быть: · симметричной, если сопротивления фаз нагрузки одинаковы по характеру и значению; · несимметричной, если сопротивления фаз нагрузки

Соединение треугольником
Трёхфазная цепь при соединении источника и приёмника треугольником имеет разветвлённую многоконтурную схему (рис. 5.9). Расчёт этой сложной цепи значительно упрощается, если не принимать в

Вращающееся магнитное поле
Одним из основных преимуществ многофазных токов является возможность получения вращающихся магнитных полей, лежащих в основе принципа действия наиболее распространённых типов двигателей переменного

Особенности расчета линейной электрической цепи с несинусоидальными источниками
  Расчет цепей, в которых действует один или несколько несинусоидальных источников периодических Э.Д.С. и токов, раскладывается на три этапа. 1. Разложение Э.Д.С. и токов ист

Мощность при несинусоидальных источниках
Под активной мощностью Р несинусоидального тока понимают среднее значение мгновенной мощности за период первой гармоники: . (6.28) Если представить напряжение и ток рядами

Определение коэффициентов Y, Z, H, G и В форм уравнений через коэффициенты формы А
  Иногда на практике возникает потребность в переходе от одной формы записи уравнений к другой. Ниже приведены соотношения для расчета коэффициентов упомянутых выше форм при

Соединение четырехполюсников
  Четырёхполюсники соединяются различными способами. Чаще всего встречаются следующие виды соединений четырёхполюсников: 1. Последовательно – последовательное (ил

Линейные диаграммы
  При исследовании электрических цепей часто бывает, что какая-либо комплексная величина определяется уравнением вида: ; (7.27) где - изменяющаяся комплексн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги