рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Конструктивные особенности аппаратов для УВЧ –терапии и индуктотермии

Конструктивные особенности аппаратов для УВЧ –терапии и индуктотермии - раздел Медицина, МЕТОДИЧЕСКОЕ ПОСОБИЕ К ЛАБОРАТОРНЫМ РАБОТАМ ПО МЕДИЦИНСКОЙ И БИОЛОГИЧЕСКОЙ ФИЗИКЕ для студентов первого курса   Основным Функциональным Блоком Указанных Аппаратов Является ...

 

Основным функциональным блоком указанных аппаратов является двухтактный ламповый генератор переменного электромагнитного поля. Электромагнитные колебания возникают в колебательном контуре генератора, образованным емкостью Са и индуктивностью Lа, частота колебаний определяется величинами емкости и индуктивности колебательного контура.

 

 

Трехэлектродные электронные лампы Л1 и Л2 обеспечивают поступление энергии в колебательный контур от внешнего питания. Чтобы колебания в контуре были незатухающими для этого необходимо в один полупериод открыть одну лампу, а в другой полупериод другую лампу. Это достигается использованием положительной индуктивной обратной связи, реализуемой с помощью катушки обратной связи Lс, крайние отводы которой подключены к управляющим сеткам ламп Л1 и Л2, а средний отвод катушки связан с катодами ламп. В положительный период колебаний на управляющей сетке лампы Л1 будет положительный потенциал относительно катода, лампа открыта – через нее протекает электрический ток, обеспечивается поступление энергии в колебательный контур. На управляющей сетке лампы Л2 в положительный полупериод напротив – отрицательный потенциал относительно катода и лампа заперта (рис.4).

В отрицательный полупериод колебаний меняется полярность потенциала на управляющих сетках ламп Л1 и Л2 относительно катода, лампа Л1 закрывается, лампа Л2 открывается. Таким образом, обеспечивается поступление энергии в колебательный контур генератора в оба полупериода колебаний (двухтактный генератор).

Для воздействия на пациента переменным электромагнитным полем «электроды пациента» - аппараты УВЧ или «катушка пациента» - аппараты для индуктотермии включаются в терапевтический контур (Lt.Ct) (рис.3), который индуктивно связан с контуром генератора. Использование терапевтического контура обеспечивает безопасность пациента, исключая контакт с электрическими цепями генератора, которые находятся под высоким напряжением. Для воздействия на пациента переменным электрическим полем необходимо настроить терапевтический контур в резонанс с контуром генератора с помощью конденсатора переменной емкости Сt, контролируя настройку с помощью газоразрядной лампы индикатора.

Электрическая схема аппарата смонтирована в металлическом корпусе. Отдельные элементы схемы экранированы (рис.5). Элементы управления находятся на передней панели и имеют соответствующие надписи.

Переключатель «НАПРЯЖЕНИЕ» служит для регулировки рабочих режимов аппарата в условиях колебания напряжения в сети. Контроль напряжения сети осуществляется при нажатии кнопки «КОНТРОЛЬ». Для изменения мощности, отдаваемой генератором, служит переключатель «МОЩНОСТЬ», имеющий четыре положения: 0, 20, 40, 70 Вт ( в зависимости от модели прибора).

Ёмкость переменного конденсатора терапевтического контура изменяется ручкой «НАСТРОЙКА», расположенной на передней панели аппарата. Контроль настройки терапевтического контура осуществляется с помощью стрелочного измерительного прибора. На правой боковой стенке аппарата укреплены два кронштейна для установки электрододержателей, имеющих шарнирные соединения, обеспечивающие установку в различные положения.

Распределение напряженности электрического поля между электродами пациента зависит от размеров электродов, расстояния между ними и от их взаимного расположения. Это распределение можно исследовать с помощью дипольной антенны (ДА), представляющей собой два проводника, между которыми включен полупроводниковый диод. Дипольная антенна соединена с миллиамперметром.

Сила тока, возникающего в контуре дипольной антенны, пропорциональна напряженности электрического поля УВЧ.

Для изучения теплового воздействия электрического поля УВЧ на электролиты и диэлектрики между электродами устанавливаются кюветы из оргстекла с исследуемыми жидкостями. Количество жидкостей в кюветах подбирается так, чтобы их теплоёмкости были одинаковы. Изменение температуры фиксируется термометрами, помещаемыми в кюветы.

 

Ход выполнения работы:

 

Внимание!

 

При работе с аппаратом для УВЧ-терапии запрещается:

- приступать к работе, не ознакомившись с инструкцией по его эксплуатации;

- подключать или отключать заземление и заменять предохранители при включенном аппарате;

- подносить к проводам и электродам аппарата металлические предметы во избежание ожогов токами высокой частоты;

- заменять электроды и провода при включенном аппарате.

 

Упражнение 1.Исследование пространственного распределения электрического поля УВЧ

 

1. Установить между электродами экран с координатной сеткой.

 

2. Включите аппарат УВЧ, для чего переключатель «НАПРЯЖЕНИЕ» поставьте в положение 1 (при этом должна загореться сигнальная лампочка), затем нажмите кнопку «КОНТРОЛЬ» и, вращая переключатель «НАПРЯЖЕНИЕ», установите стрелку индикатора аппарата на середину красного сектора. После этого установите переключатель «МОЩНОСТЬ» на заданное значение и ручкой «НАСТРОЙКА» добейтесь максимального отклонения стрелки индикатора.

 

3. Перемещая дипольную антенну в горизонтальной плоскости влево и вправо от центра на расстояние lx, через каждый сантиметр измерьте силу тока I.

 

4. Перемещая дипольную антенну в вертикальной плоскости вверх и вниз от центра на расстояние ly, через каждый сантиметр измерьте силу тока I. Так же и в горизонтальной плоскости.

 

5. Результаты измерений занести в таблицу №1

 

Таблица№1

Горизонтальная плоскость   Вертикальная плоскость
lх1, см   I, А lх2, см I, А ly1, см I, А ly2,см I, А
         
  -1     -1  
  -2     -2  
  -3     -3  
  -4     -4  
  -5     -5  
  -6     -6  
  -7     -7  
  -8     -8  

 

где lх1 – смещение вправо, lх2смещение влево от начала координат,

ly1 – смещение вверх, ly2 – смещение вниз от начала координат.


6. Постройте графики по данным таблицы:

 


Упражнение 2.Исследование теплового воздействия поля УВЧ на электролиты и диэлектрики

 

1. Поместить кюветы с раствором поваренной соли (электролит) и глицерином (диэлектрик) между двумя электродами аппарата.

2. Измерьте температуры Т1 и Т2 жидкостей в кюветах.

3. Включите аппарат и настройте терапевтический контур в резонанс с контуром генератора с помощью газоразрядной лампы индикатора.

4. Снимите показания термометров через каждые 5 минуты на протяжении 20 минут.

5. Результаты занести в таблицу №2:

Таблица №2

t, мин Т1, С°   Т2, С°
   
   
   
   
   

 

6. Постройте график зависимости температуры исследуемых жидкостей от времени t воздействия на них электрического поля УВЧ Т=f(t).

 

 

По результатам выполненной работы записать вывод:

– Конец работы –

Эта тема принадлежит разделу:

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ЛАБОРАТОРНЫМ РАБОТАМ ПО МЕДИЦИНСКОЙ И БИОЛОГИЧЕСКОЙ ФИЗИКЕ для студентов первого курса

Профессионального образования Тюменская государственная медицинская академия Министерства здравоохранения и социального развития Российской... ГБОУ ВПО ТюмГМА Минздравасоцразвития России Кафедра... Схематическое изображение электрического поля сердца...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Конструктивные особенности аппаратов для УВЧ –терапии и индуктотермии

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Кафедра медицинской и биологической физики с курсом медицинской информатики
  МЕТОДИЧЕСКОЕ ПОСОБИЕ К ЛАБОРАТОРНЫМ РАБОТАМ ПО МЕДИЦИНСКОЙ И БИОЛОГИЧЕСКОЙ ФИЗИКЕ для студентов первого курса     Тюмень, 2011 г.

Краткая теория
   

Электрокардиографические отведения
  Для регистрации электрической активности сердечной мышцы необходимо отвести разность потенциалов с поверхности тела человека. Для этой цели используются электроды – металлические пл

Регистрирующие устройства
Усиленный сигнал с выхода усилителя поступает на регистрирующее устройство, которое предст

Ход работы
Подготовка к работе: 1. Проверить, заземлён ли электрокардиограф.

ЛАБОРАТОРНАЯ РАБОТА № 2.5
Тема:Изучение статистических методов обработки опытных данных. Значение темы в системе знаний врача: Работники здравоохранения поставляют основную массу д

I. Проведение статистической обработки результатов исследования
Рассмотрим краткую схему обработки полученной цифровой информации. Например, исследователь провел изучение каких-то показателей у здоровых людей и больных. Что делать с этими цифрами дальше?

II. Нормальный закон распределения
Результаты, полученные при измерении той или иной величины, нельзя принять из-за ряда случайностей за достоверные (действительные значения измеряемых величин). Тогда приходится говорить о вероятнос

III. Проверка распределения эмпирических данных на нормальный закон распределения.
Нормальное распределение случайной величины встречается в природе очень часто. В связи с этим при отсутствии оснований предполагать, что случайная величина распределена не нормально, в первую очере

IV. Получение статистического материала.
Определение времени полного сердечного сокращения по электрокардиограмме.  

Ход работы
Упражнение 1.Измерение длительности полных сердечных сокращений (SR-R). 1)Исследуя 30 интервалов зубцов R-R, на

ТЕМА: Изучение устройства и работы аппарата для УВЧ-терапии.
  Цель работы: Ознакомление с принципом действия аппарата для УВЧ-терапии; исследование пространственного распределения электрического поля УВЧ, а так же исследование

Физиотерапия
Воздействие переменным электромагнитным полем на организм человека для достижениялечебного эффекта следует отнести к методам физиотерапии (греческое physics–природа + therapy–лечение).

Индуктотермия
Индуктотермия (лат.Inductio-наведение + греческое therme-теплота) – метод электролечения, при котором на ткани организма воздействуют переменным электромагнитным полем высокой частоты (13,56 МГц).

УВЧ-терапия
Ультравысокочастотная терапия – метод лечения переменным электромагнитным полем в частотном диапазоне от 30 до 3000 МГц. При УВЧ-терапии лечебный эффект достигается за счет воздействия на органы и

Явление преломления света. Закон Снелля
При переходе света через границу раздела двух сред, скорость распространения света, в которых различна, происходит изменение его направления. Это явление называется преломлением или рефра

Предельные углы преломления и полного отражения.
При переходе света из среды с меньшим показателем преломления (оптически менее плотная среда) в сред

Естественный и поляризованный свет
Свет – это электромагнитные волны, уравнение которых имеет вид: где

Поляризатор и анализатор
Устройство, позволяющее получать поляризованный свет из естественного, называют поляризатором. Он пропускает только составляющие вектора

Закон Малюса
Пусть колебания вектора поляризованной световой волны совершаются в плоскости, составляющей угол j с

Вращение плоскости поляризации
Явление вращения плоскости поляризации заключается в повороте плоскости поляризации поляризованного света при прохождении через вещество. Вещества, обладающие таким свойством, называют оптически

Устройство и принцип работы поляриметра
Принципиальная схема поляриметра:    

Устройство и работа составных частей прибора
Составные части прибора (рис.4): 1 – кронштейн 2 – соединительная трубка

Поглощение света веществом.
При пропускании света через слой вещества его интенсивность уменьшается. Интенсивность уменьшается вследствие взаимодействия световой волны с электронами вещества, в результате чего часть световой

Коэффициент пропускания, оптическая плотность.
Отношение интенсивности света, прошедшего сквозь данное тело или раствор к интенсивности света, падающего на тело, называется коэффициентом пропускания:

Устройство и принцип работы фотоэлектроколориметра.
Фотоэлектроколориметр ФЭК служит для определения концентраций окрашенных растворов по поглощению света этими растворами.  

Использование концентрационной колориметрии в медицине.
Метод концентрационной колориметрии широко применяется в медицине. Фотоэлектроколориметр используется в клинико-биохимических исследованиях. Колориметр позволяет производить измерения коэффициентов

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги