рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Случайные события и величины, их основные характеристики

Случайные события и величины, их основные характеристики - Конспект Лекций, раздел Экономика, УЧЕТ И АУДИТ. Конспект лекций Как Уже Говорилось, При Анализе Больших Систем Наполнителем Каналов Связи Меж...

Как уже говорилось, при анализе больших систем наполнителем каналов связи между элементами, подсистемами и системы в целом могут быть:

· продукция, т. е. реальные, физически ощутимые предметы с заранее заданным способом их количественного и качественного описания;

· деньги, с единственным способом описания — суммой;

· информация, в виде сообщений о событиях в системе и значениях описывающих ее поведение величин.

Начнем с того, что обратим внимание на тесную (системную!) связь показателей продукции и денег с информацией об этих показателях. Если рассматривать некоторую физическую величину, скажем — количество проданных за день образ­цов продукции, то сведения об этой величине после продажи могут быть получены без проблем и достаточно точно или достоверно. Но, уже должно быть ясно, что при системном анализе нас куда больше интересует будущее — а сколько этой продукции будет продано за день? Этот вопрос совсем не праздный — наша цель управлять, а по об­разному выражению “управлять — значит предвидеть”.

Итак, без предварительной информации, знаний о количественных показателях в системе нам не обой­тись. Величины, которые могут принимать различные значения в зависимости от внешних по отношению к ним условий, принято называть случайными (стохастичными по природе). Так, например: пол встреченного нами человека может быть женским или мужским (дискретная случайная величина); его рост также может быть различным, но это уже непрерывная случайная величина — с тем или иным количеством возможных значений (в зависимости от единицы измерения).

Для случайных величин (далее — СВ) приходится использовать особые, статистические методы их описания. В зависимости от типа самой СВ — дискретная или непрерывная это делается по разному.

Дискретное описание заключается в том, что указываются все возможные значения данной величины (например - 7 цветов обычного спектра) и для каждой из них указывается вероятность или частота наблюдений именного этого значения при бесконечно большом числе всех наблюдений.

 

Можно доказать (и это давно сделано), что при увеличении числа наблюдений в определенных усло­виях за значениями некоторой дискретной величины частота повторений данного значения будет все больше приближаться к некоторому фиксированному значению — которое и есть вероятность этого значения.

К понятию вероятности значения дискретной СВ можно подойти и иным путем — через случайные собы­тия. Это наиболее простое понятие в теории вероятностей и математической статистике — событие с вероятностью 0.5 или 50% в 50 случаях из 100 может произойти или не произойти, если же его вероятность более 0.5 - оно чаще происходит, чем не происходит. События с вероятностью 1называют достоверными, а с вероятностью 0невозможными.

Отсюда про­стое правило: для случайного события X вероятности P(X) (событие происходит) и P(X) (событие не происходит), в сумме для простого события дают 1.

Если мы наблюдаем за сложным событием — например, выпадением чисел 1..6 на верхней грани игральной кости, то можно считать, что такое событие имеет множество исходов и для каждого из них вероятность составляет 1/6 при симметрии кости.

Если же кость несимметрична, то вероятности отдельных чисел будут разными, но сумма их равна 1.

Стоит только рассматривать итог бросания кости как дискретную случайную величину и мы придем к понятию распределения вероятностей такой величины.

Пусть в результате достаточно большого числа наблюдений за игрой с помощью одной и той же кости мы получили следующие данные:

Таблица 2.1

Грани 1 2 3 4 5 6 Итого
Наблюдения 140 80 200 400 100 80 1000

Подобную таблицу наблюдений за СВ часто называют выборочным распределением, а соответствующую ей картинку (диаграмму) — гистограммой.

 

 

Рис. 2.1

Какую же информацию несет такая табличка или соответствующая ей гистограмма?

Прежде всего, всю — так как иногда и таких данных о значениях случайной величины нет и их приходится либо добывать (эксперимент, моделирование), либо считать исходы такого сложного события равновероятными — по на любой из исходов.

С другой стороны — очень мало, особенно в цифровом, численном описании СВ. Как, например, ответить на вопрос: — а сколько в среднеммы выигрываем за одно бросание кости, если выигрыш соответствует выпавшему числу на грани?

Нетрудно сосчитать:

1•0.140+2•0.080+3•0.200+4•0.400+5•0.100+6•0.080= 3.48

То, что мы вычислили, называется средним значением случайной величины, если нас интересует прошлое.

Если же мы поставим вопрос иначе — оценить по этим данным наш будущий выигрыш, то ответ 3.48 принято называть математическим ожиданиемслучайной величины, которое в общем случае определяется как

Mx = å Xi ·P(Xi); {2 - 1}

где P(Xi) — вероятность того, что X примет свое i-е очередное значение.

Таким образом, математическое ожидание случайной величины (как дискретной, так и непрерывной)— это то, к чему стремится ее среднее значение при достаточно большом числе наблюдений.

Обращаясь к нашему примеру, можно заметить, что кость несимметрична, в противном случае вероятности составляли бы по 1/6 каждая, а среднее и математическое ожидание составило бы 3.5.

Поэтому уместен следующий вопрос - а какова степень асимметрии кости - как ее оценить по итогам наблюдений?

Для этой цели используется специальная величина — мера рассеяния — так же как мы "усредняли" допустимые значения СВ, можно усреднить ее отклонения от среднего. Но так как разности (Xi - Mx)всегда будут компенсировать друг друга, то приходится усреднять не отклонения от среднего, а квадраты этих отклонений. Величину

{2 - 2}

принято называть дисперсией случайной величины X.

Вычисление дисперсии намного упрощается, если воспользоваться выражением

{2 - 3}

т. е. вычислять дисперсию случайной величины через усредненную разность квадратов ее значений и квадрат ее среднего значения.

Выполним такое вычисление для случайной величины с распределением рис. 1.

Таблица 2.2

Грани(X) 1 2 3 4 5 6 Итого
X2 1 4 9 16 25 36
Pi 0.140 0.080 0.200 0.400 0.100 0.080 1.00
Pi•X2•1000 140 320 1800 6400 2500 2880 14040

Таким образом, дисперсия составит 14.04 - (3.48)2 = 1.930.

Заметим, что размерность дисперсии не совпадает с размерностью самой СВ и это не позволяет оценить величину разброса. Поэтому чаще всего вместо дисперсии используется квадратный корень из ее значения — т. н. среднеквадратичное отклонение или отклонение от среднего значения:

{2 - 4}

составляющее в нашем случае = 1.389. Много это или мало?

Сообразим, что в случае наблюдения только одного из возможных значений (разброса нет) среднее было бы равно именно этому значению, а дисперсия составила бы 0. И наоборот - если бы все значения наблюдались одинаково часто (были бы равновероятными), то среднее значение составило бы (1+2+3+4+5+6) / 6 = 3.500; усредненный квадрат отклонения — (1 + 4 + 9 + 16 + 25 + 36) / 6 =15.167; а дисперсия 15.167-12.25 = 2.917.

Таким образом, наибольшеерассеяние значений СВ имеет место при ее равновероятном или равномерном распределении.

Отметим, что значения Mxи SX являются размерными и их абсолютные значения мало что говорят. Поэтому часто для грубой оценки "случайности" данной СВ используют т. н. коэффициент вариации или отношение корня квадратного из дисперсии к величине математического ожидания:

Vx = SX/MX . {2 - 5}

В нашем примере эта величина составит 1.389/3.48=0.399.

Итак, запомним, что неслучайная, детерминированная величина имеет математическое ожидание равное ей самой, нулевую дисперсию и нулевой коэффициент вариации, в то время как равномерно распределенная СВ имеет максимальную дисперсию и максимальный коэффициент вариации.

В ряде ситуаций приходится иметь дело с непрерывно распределенными СВ - весами, расстояниями и т. п. Для них идея оценки среднего значения (математического ожидания) и меры рассеяния (дисперсии) остается той же, что и для дискретных СВ. Приходится только вместо соответствующих сумм вычислять интегралы. Второе отличие — для непрерывной СВ вопрос о том какова вероятность принятия нею конкретного значения обычно не имеет смысла — как проверить, что вес товара составляет точно 242 кг - не больше и не меньше?

Для всех СВ — дискретных и непрерывно распределенных, имеет очень большой смысл вопрос о диапазоне значений. В самом деле, иногда знание вероятности того события, что случайная величина не превзойдет заданный рубеж, является единственным способом использовать имеющуюся информацию для системного анализа и системного подхода к управлению. Правило определения вероятности попадания в диапазон очень просто — надо просуммировать вероятности отдельных дискретных значений диапазона или проинтегрировать кривую распределения на этом диапазоне.

– Конец работы –

Эта тема принадлежит разделу:

УЧЕТ И АУДИТ. Конспект лекций

Конспект лекций для специальности УЧЕТ И АУДИТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Случайные события и величины, их основные характеристики

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие понятия теории систем и системного анализа
Термины теория систем и системный анализ или, более кратко — системный подход, несмотря на период более 25 лет их использования, все еще не нашли общепринятого, стандартного ис

Сущность и принципы системного подхода
ТССА, как отрасль науки, может быть разделена на две, достаточно условные части: · теоретическую: использующую такие отрасли как теория вероятностей, теория информаци

Проблемы согласования целей
Как уже отмечалось, в большинстве случаев (в экономических системах — повсеместно), показателем полноты достижения цели “жизни” системы служит стоимостной показатель. Разумеется, что выбор показате

Проблемы оценки связей в системе
Рассмотрим теперь вопрос о связях системы — между отдельными элементами подсистем, подсистемами разных уровней и связях с внешней средой. Хотя бы умозрительно можно полагать наличие каналов,

Моделирование как метод системного анализа
Одной из проблем, с которой сталкиваются почти всегда при проведении системного анализа, является проблема эксперимента в системе или над системой. Очень редко это разрешено моральным

Процессы принятия управляющих решений
Пусть построена модель системы с соблюдением всех принципов системного подхода, разработаны и “обкатаны” алгоритмы необходимых расчетов, приготовлены варианты управляющих воздействий на систему. На

Взаимосвязи случайных событий
Вернемся теперь к вопросу о случайных событиях. Здесь методически удобнее рассматривать вначале простые события (может произойти или не произойти). Вероятность события X будем обозначать

Схемы случайных событий и законы распределений случайных величин
Большую роль в теории и практике системного анализа играют некоторые стандартные распределения непрерывных и дискретных СВ. Эти распределения иногда называют "теоретическими", п

Методы непараметрической статистики
Использование классических распределений случайных величин обычно называют "параметрической статистикой" - мы делаем предположение о том, что интересующая нас СВ (дискретная или непрерывн

Корреляция случайных величин
Прямое токование термина корреляция — стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами. Вы

Линейная регрессия
В тех случаях, когда из природы процессов в системе или из данных наблюдений над ней следует вывод о нормальном законе распределения двух СВ - Y и X, из которых одна является независи

Элементы теории статистических решений
Что такое - статистическое решение? В качестве простейшего примера рассмотрим ситуацию, в которой вам предлагают сыграть в такую игру: · вам заплатят 2 доллара, если подброшенная монета у

Общие положения
В большинстве случаев практического применения системного анализа для исследования свойств и последующего оптимального управления системой можно выделить следующие основные этапы: · Содержательная

Содержательная постановка задачи
Уже упоминалось, что в постановке задачи системного анализа обязательно участие двух сторон: заказчика (ЛПР) и исполнителя данного системного проекта. При этом участие заказчика не ограничивается ф

Построение модели изучаемой системы в общем случае
Модель изучаемой системы в самом лаконичном виде можно представить в виде зависимости E = f(X,Y){3 - 1} где: E— некоторый количественный показатель эффек

Моделирование в условиях определенности
Классическим примером простейшей задачи системного анализа в условиях определенности может служить задача производства и поставок товара. Пусть некоторая фирма должна производить и поставлять проду

Экспертные оценки, ранговая корреляция и конкордация
Пусть в процессе системного анализа нам пришлось учитывать некоторую величину U, измерение которой возможно лишь по порядковой шкале (Ord).Например, нам приходится учитывать 10 целей

Моделирование системы в условиях неопределенности
Как уже отмечалось в первой части нашего курса, в большинстве реальных больших систем не обойтись без учета “состояний природы” — воздействий стохастического типа, случайных величин или случ

Моделирование систем массового обслуживания
Достаточно часто при анализе экономических систем приходится решать т. н. задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания авто

Моделирование в условиях противодействия, игровые модели
Как уже неоднократно отмечалось, системный анализ невозможен без учета взаимодействий данной системы с внешней средой. Ранее упоминалась необходимость учитывать состояния природы — бо

Моделирование в условиях противодействия, модели торгов
К этому классу относятся задачи анализа систем с противодействием (конкуренцией), также игровых по сути, но с одной особенностью — "правила игры" не постоянны в одном единственном пункте

Методы анализа больших систем, планирование экспериментов
  Еще в начале рассмотрения вопросов о целях и методах системного анализа мы обнаружили ситуации, в которых нет возможности описать элемент системы, подсистему и систему в целом а

Методы анализа больших систем, факторный анализ
  Данный параграф является заключительным и более не будет возможности осветить еще одну особенность методов системного анализа, показать вам еще один путь к достижению профессиональ

От автора
Выражая благодарность каждому, кто дочитал до этого места или прослушал все лекции и посетил все семинары, автор считает своим долгом сделать ряд пояснений, раскрыть свою позицию и свои взгляды на

Теория систем и системный анализ
Общие вопросы системного анализа Методы поиска экстремума Уайлд Д.Дж. Наука об управлении. Байесовский подход

Общие вопросы математики
Комбинаторика Введение в комбинаторный анализ Риордан Дж. Прикладная комбинаторная математика Бе

Математическая статистика
Общие вопросы Метод наименьших квадратов Линник Ю.В. Теория распределений Кендалл М.,СтьюартА.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги