рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

С гетероскедастичными остатками

С гетероскедастичными остатками - раздел Экономика, Курс лекций по дисциплине Эконометрика. В последнее время специалисты Довольно Часто При Построении Регрессии Анализируемые Объекты Неоднородны, На...

Довольно часто при построении регрессии анализируемые объекты неоднородны, например, при исследовании структуры потребления домохозяйств естественно ожидать, что колебания в структуре будут выше для богатых, чем для бедных домохозяйств. В этой ситуации предположение (3.3) о постоянстве дисперсии случайной ошибки (имеется в виду возможное поведение случайного члена до того, как сделана выборка) оказывается не соответствующим действительности. В случаях, когда дисперсия uодинакова в каждый момент времени или для каждого значения X, существуют определенные ограничения (в некоторой полосе) для расположения точек на графике X и Y, согласно которым отчетливой тенденции к увеличению или уменьшению дисперсии по мере роста X не наблюдается.

На рис. 4.1 приводятся примеры изменения разброса (гетероскедастичности) случайной ошибки регрессии.

На рис. 4.1а изображена ситуация, когда значения дисперсии растут по мере увеличения значений регрессора X. На рис. 4.1б дисперсия ошибки достигает максимальной величины при средних значениях X, уменьшаясь по мере приближения к крайним значениям. Наконец, на рис. 4.1в дисперсия ошибки оказывается наибольшей при малых значениях X, быстро уменьшается и становится однородной по мере увеличения независимой переменной X.

 

       
   
 

 


Рис. 4.1. Примеры гетероскедастичности

 

Гетероскедастичность дисперсии случайного члена означает, что

, (4.8)

т.е. нарушается предположение (3.3) в КЛММР, и мы должны рассматривать ОЛММР с нулевой ковариацией случайных ошибок (ср. (4.5) и (4.8)).

Основные последствия гетероскедастичности проявляются в получении неэффективных оценок МНК и занижении стандартных ошибок коэффициентов регрессии, что завышает t-статистику и дает неправильное представление о точности уравнения регрессии.

Поэтому для оценивания регрессии с гетероскедастичными случайными ошибками применяется ОМНК.

Предположим, что нам известны значения величин i =1,…,n. Тогда уравнение (4.3) разделим на si:

,

и получим регрессию с постоянной (гомоскедастичной) дисперсией случайного члена, действительно .

Для получения оценок неизвестных дисперсий i =1,…,n будем предполагать, что они пропорциональны некоторым числам, т.е. , где s2 – некоторая константа.

Принимая различные гипотезы относительно характера гетероскедастичности, будем иметь соответствующие значения li.

Если дисперсия случайного члена пропорциональна квадрату регрессора X, так что , то , i =1,…,n.

Если дисперсия случайного члена пропорциональна X, так что , то , i =1,…,n. Например, для случая одной объясняющей переменной имеем в этом случае систему уравнений ОМНК вида:

Поскольку значения li, i =1,…,n являются фактически весами, которые устраняют неоднородность дисперсии, то ОМНК для системы с гетероскедастичностью часто называют методом взвешенных наименьших квадратов.

Существуют также и другие методы коррекции модели на гетероскедастичность, в частности состоятельное оценивание стандартных ошибок. Известны способы коррекции стандартных ошибок Уайта и Невье-Веста [5, с. 144-146].

О проверке выборки на гомоскедастичность.

Рассмотрим вопрос тестирования выборки на наличие гомоскедастичности. Возможности такой проверки зависят от природы исходных данных.

Если имеется обширная выборка, то можно воспользоваться стандартным критерием однородности дисперсии Бартлетта.

Расчленяя выборку на m независимых групп (каждой из них соответствует единственное значение переменной X), вычислим величины:

,

причем åni=n, здесь ni - число наблюдений в i группе, - дисперсия ошибки в i группе. Величина Q1/Q2 будет приближенно удовлетворять распределению c2 с (m-1) степенями свободы. Если вычисленное по выборке значение c2 меньше критического, то гипотеза об однородности выборочной дисперсии принимается, в противном случае отклоняется.

В случаях малого количества наблюдений в выборке, когда группировка данных невозможна, используется тест Голдфелда и Куандта. Он предусматривает осуществление следующих шагов:

1. Упорядочить наблюдения по убыванию той независимой переменной, относительно которой есть подозрение на гетероскедастичность.

2. Опустить v наблюдений, оказавшихся в центре (v должно быть примерно равно четверти общего количества наблюдений n).

3. Оценить отдельно обыкновенным методом наименьших квадратов регрессии на первых (n-v)/2 наблюдениях и на последних (n-v)/2 наблюдениях при условии, что (n-v)/2 больше числа оцениваемых параметров k.

4. Пусть e1 и e2 - суммы квадратов остатков от первой и второй регрессий соответственно. Тогда статистика Q=e1/e2 будет удовлетворять F - распределению с ((n-v-2k)/2; (n-v-2k)/2) степенями свободы. При Q < Fa гипотеза об однородности выборочной дисперсии принимается, в противном случае (с ростом величины Q) отклоняется.

Очевидно, что решающим для этого теста является выбор величины v. Слишком большое значение v уменьшает надежность теста. Экспериментально авторами теста установлено, что для одной объясняющей переменной оптимальное v=8 при n=30 и v=16 при n=60.

Кроме перечисленных, могут использоваться тесты на гетероскедастичность Уайта, Бреуша-Пагана и др.

Пример. Проверим по критерию Бартлетта данные из примера 1 раздела 3. Будем иметь табл. 4.1. В табл. 4.1 учтено, что среднее значение ei равно 0, а значит, . Примем m=2. Тогда:

Q1=20×ln(10/20×167,41 + 10/20×59,69) - (10×ln(167,41)+10×ln(59,69))=2,55; Q2=1+1/3×(1/10+1/10-1/20)=1,05; Q1/Q2=2,43.

При одной степени свободы критическое значение c2 при 5% уровне значимости равно 3,84, а следовательно, гипотеза об однородности выборочной дисперсии принимается.

Для тех же данных применим тест Гольдфельда и Куандта. В нашем случае число объясняющих переменных k=2, количество исходных данных в выборке n=20. Упорядочим наблюдения по убыванию независимой переменной X2 – расстояние перевозки, относительно которой есть подозрение на гетероскедастичность. Опустим 4 наблюдения, оказавшихся в центре, т.е. v=4. При значении v=4 получим суммы квадратов остатков от первой и второй регрессий соответственно e1=1167,38 и e2=31,49. Статистика Q=e1/e2=1167,38/31,49 = 37,07 удовлетворяет F-распределению с (6; 6) степенями свободы. F0,05(6, 6) = 4,28, Q > F и гипотеза об однородности выборочной дисперсии должна быть отвергнута.

Поскольку тесты дают противоположные результаты (что не редкость в эконометрике), то лучше согласиться с наихудшим вариантом, т.е. предположить наличие гетероскедастичности и предпринять соответствующие корректирующие меры. В частности, скорректировать стандартные ошибки по формуле Невье-Веста. В таблице 4.2 представлены результаты регрессии до корректировки и после корректировки на гетероскедастичность. Видно, что на величине коэффициентов регрессии корректировка на гетероскедастичность не отражается, а стандартные ошибки и значения статистик были пересчитаны. Ñ

Таблица 4.1

– Конец работы –

Эта тема принадлежит разделу:

Курс лекций по дисциплине Эконометрика. В последнее время специалисты

Введение... В последнее время специалисты обладающие знаниями и навыками проведения прикладного экономического анализа с...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: С гетероскедастичными остатками

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Взаимосвязь эконометрики с экономической теорией, статистикой и экономико-математическими методами
Эконометрика не только выявляет объективно существующие экономические законы и связи между экономическими показателями, качественно определенными в экономической теории, но и формирует подходы к их

Области применения эконометрических моделей
Области применения эконометрических моделей напрямую связаны с целями эконометрического моделирования, основными из которых являются: 1) прогноз экономических и социально-экономичес

Методологические вопросы построения эконометрических моделей
В любой эконометрической модели, в зависимости от конечных прикладных целей ее использования все участвующие в ней переменные подразделяются на: - экзогенные переменные, зада

Основные цели и задачи прикладного корреляционно-регрессионного анализа
Рассмотрим некоторый экономический объект (процесс, явление, систему) и выделим только две переменные, характеризующие объект. Обозначим переменные буквами Y и X. Будем предполагать,

Постановка задачи регрессии
Поставим задачу регрессии Y на X. Пусть мы располагаем n парами выборочных наблюдений над двумя переменными X и Y:

Парная регрессия и метод наименьших квадратов
Будем предполагать в рамках модели (2.2) линейную зависимость между двумя переменными Y и X. Т.е. имеем модель парной регрессии в виде: Yi =a+

Коэффициент корреляции, коэффициент детерминации, корреляционное отношение
Для трактовки линейной связи между двумя переменными акцентируют внимание на коэффициенте корреляции. Пусть имеется выборка наблюдений (Xi, Yi), i

Оценка статистической значимости регрессии
Перейдем к вопросу о том, как отличить "хорошие" оценки МНК от "плохих". Конечно, предполагается, что существуют критерии качества рассчитанной линии регрессии. Перечис

Интерпретация уравнения регрессии
Проанализируем, какую информацию дает нам оцененное уравнение регрессии (2.6), т.е. поставим вопрос об интерпретации (содержательном объяснении) коэффициентов уравнения. Во-первых,

Предположения модели
Пусть мы располагаем выборочными наблюдениями над k переменными Yi и , j=1,..., k,

Методом наименьших квадратов
Применяя к (3.1) с учетом (3.2)-(3.5) МНК, получаем из необходимых условий минимизации функционала: , т.

Парная и частная корреляция в КЛММР
В случаях, когда имеется одна независимая и одна зависимая переменные, естественной мерой зависимости (в рамках линейного подхода) является выборочный (парный) коэффициент корреляции между ними.

И множественный коэффициент детерминации
Множественный коэффициент корреляции используется в качестве меры степени тесноты статистической связи между результирующим показателем (зависимой переменной) y и набором объясняющих

Оценка качества модели множественной регрессии
Проверка качества модели множественной регрессии может быть осуществлена с помощью дисперсионного анализа. Как уже было отмечено (см. 2.5), сумма квадратов отклонений от среднего в выборке

Мультиколлинеарность и методы ее устранения
Одним из важнейших этапов построения регрессии является отбор факторов , j=1,..., k, i=1,2,…,n

Спецификация уравнения регрессии и ошибки спецификации
  При построении эконометрической модели исследователь специфицирует составляющие ее соотношения, выбирает переменные, входящие в эти соотношения, а также определяет вид математическо

Обобщенный метод наименьших квадратов
Обобщим КЛММР вида (3.1). Пусть по-прежнему мы располагаем выборочными наблюдениями над k переменными Yi и

Проверка гомоскедастичности дисперсии по критерию Бартлетта
Y Ошибка ei ei2 Y Ошибка ei ei

С автокорреляцией остатков
Вернемся еще раз к предположению (3.3). Из него, в частности, следует, что ковариации случайной ошибки для разных наблюдений равны нулю. Если к тому же случайные ошибки распределены нормально, то э

Фиктивные переменные. Тест Чоу
Факторы (объясняющие переменные), применяемые в задаче регрессии до сих пор, принимали значения из некоторого непрерывного интервала. Иногда может понадобиться ввести в модель переменные, значения

Данные для расчета модели с фиктивной переменной
X

Специфика временных рядов
Часто исследователь имеет дело с данными в виде временных рядов. Совокупность наблюдений анализируемой величины

Проверка гипотезы о существовании тренда
Для выявления факта наличия или отсутствия неслучайной составляющей f(t), то есть для проверки гипотезы о существовании тренда - Н0: Еy(t

Аналитическое выравнивание временных рядов, оценка параметров уравнения тренда
Метод обработки временных рядов, целями которого является устранение случайных колебаний и построение аналитической функции, характеризующей зависимость уровней ряда от времени – тренда, называется

Метод последовательных разностей
Часто при аналитическом выравнивании ряда используется модель тренда в виде полинома. Для определения порядка аппроксимирующего полинома в этом случае выделения тренда широко используется

Аддитивная и мультипликативная модели временного ряда
Простейшим подходом к моделированию временных рядов, содержащих сезонные колебания, является построение аддитивной или мультипликативной моделей временного ряда. Выбор одной из этих моделе

Модели стационарных и нестационарных временных рядов и их идентификация
Модели авторегрессии порядка p (AutoRegressive - AR(p) models). Достаточно часто экономические показатели, представлен

Тестирование стационарности временного ряда
Как было отмечено выше, стационарные временные ряды имеют следующие отличительные черты: значения ряда колеблются вокруг постоянного среднего значения с постоянной дисперсией, которая не зависит от

Эконометрический анализ взаимосвязанных временных рядов
Коинтеграция и мнимая регрессия. Рассмотрим два временных ряда yt и xt. Предположим, что оба ряда имеют единичные корни, то есть

Библиографический список
  1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. Учебник для вузов. М.: ЮНИТИ, 1998. 1022 с. 2. Джонстон Дж. Эконометрические методы.- М.: Статис

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги