рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Пойкілоосмотичні гідробіонти

Пойкілоосмотичні гідробіонти - раздел Экология, Динаміка водних мас та її роль у водних екосистемах У Процесі Еволюції Сформувались Різні Механізми Сольової Адаптації. За Концен...

У процесі еволюції сформувались різні механізми сольової адаптації. За концентрацією осмотично активних речовин у біологічних рідинах внутрішнього середовища та цитоплазмі клітин пойкілоосмотичні організми не відрізняються від водного середовища, в якому вони мешкають. Так, у морських мікроорганізмів, безхребетних та примітивних хребетних (міксини) тварин осмолярність крові мало відрізняється від навколишнього водного середовища. Наприклад, осмотична концентрація крові міксини Eptatretus stoutі (круглороті) становить 1031 мосм/дм3, що майже відповідає осмолярності морської води – 1029 мосм/дм3. На відміну від інших хребетних водяних тварин, в сироватці їхньої крові дуже висока концентрація натрію, хлору і магнію, і вона ізоосмотична морській (океанічній) воді.

Серед пойкілоосмотичних – гідробіонти, які витримують лише незначні зміни солоності води (головоногі молюски, голкошкірі). Це стеногалінні пойкілоосмотичні організми.

Є й такі, які можуть витримувати значні коливання солоності води, відповідно міняючи осмотичний тиск внутрішнього середовища (евригалінні). Це переважно багатощетинкові черви, мідії. Загальна реакція на зміни солоності води у таких гідробіонтів чітко визначена. При зниженні солоності концентрація деяких іонів (особливо Na+ і Cl) та амінокислот у їх клітинах зменшується, а при підвищенні солоності, навпаки, вміст амінокислот і іонів зростає. Завдяки цьому забезпечується відносна стабільність трансмембранних іонних градієнтів, клітинна осморегуляція та підтримання об'єму клітин. Збільшення осмотично активних речовин у клітинній цитоплазмі запобігає відтоку води з неї.

Механізми підтримання осмотичної концентрації в організмі одноклітинних і багатоклітинних гідробіонтів різні.

Морські найпростіші – ізоосмотичні до середовища, і тому легко підтримують осмотичний тиск свого внутрішньоклітинного середовища. Серед великого різноманіття окремих форм найпростіших є евригалінні організми, які здатні переходити від ізоосмотичної до гіперосмотичної регуляції. Особливо це стосується прісноводних форм, гіперосмотичних щодо середовища. Підтримання гіперосмотичності у них забезпечується шляхом виведення надлишку води скорочувальними вакуолями. Багато прісноводних видів війчастих інфузорій можуть виживати в досить широкому діапазоні змін мінералізації води (до 5 ‰). Морські евригалінні види також витримують зниження солоності води до 3 ‰.

Вода надходить в клітини найпростіших шляхом обмінної дифузії, осмотичного руху по концентраційному градієнту та через живильні вакуолі. Серед найпростіших в корененіжок проникає менше води, ніж в інфузорій. Так, у корененіжки кількість рідини, що дифундує протягом однієї години в клітину і з неї, перебільшує об'єм самої клітини в 13 разів. При цьому осмотично активною є тільки 2 % клітинного об'єму, а це значить, що саме така кількість рідини може виділитись скорочувальними вакуолями.

Скорочувальні вакуолі являють собою пульсуючі утворення, які наповнюючись рідиною з цитоплазми скидають її у навколишнє середовище, тобто виконують осморегулюючу функцію (рис. 120). Завдяки цьому механізму клітини найпростіших запобігають гіпергідратації. У найпростіших може бути одна або більше вакуоль. При пошкодженні їх клітина різко набухає (обводнюється), і інфузорія гине.

Рис. 120. Скорочувальна вакуоль Paramecium caudatum в наповненому (зверху) і спорожненому (знизу) стані (за Gellei, 1939):

1– вивідний проток; 2 – клапан; 3 – ампула; 4 – приводящий канал; 5 – вії

Скорочувальні вакуолі є у всіх найпростіших, але серед морських форм вони зустрічаються тільки у окремих представників і функціонують значно менш ефективно. У прісноводних найпростіших для виведення об'єму води, рівного об'єму самої клітини, потрібно від 4 до 50 хвилин, а у морських це займає від 3 до 5 годин. Така різниця пов'язана з тим, що прісноводні найпростіші безперервно змушені “відкачувати” воду, яка постійно проникає в клітини, а морським формам, які мешкають у більш солоній воді, необхідно виводити лише ту частину води, яка надходить з кормом. Вважається, що скорочувальні вакуолі є не лише елементом відведення води, яка постійно надходить в напрямку осмотичного концентраційного градієнту, а й системою регуляції водного обміну на рівні клітини.

У евригалінних видів найпростіших вакуолі з'являються у тих випадках, коли вони потрапляють у розбавлену морську воду. Так, при перенесенні морської інфузорії Amphіpletus у 70 %-ну морську воду швидкість скорочення вакуоль зростала на 21 %. І навпаки, коли прісноводну амебу тримали у воді із зростаючою солоністю, скорочувальна активність вакуоль з підвищенням солоності води різко знижувалась, а при 50 % морської води вона зовсім зникала.

Підтвердженням існування механізму запобігання гіпергідратації найпростіших при перебуванні у прісній воді є той факт, що із зниженням мінералізації води частота скорочень водовивідних вакуоль зростає, а із збільшенням солоності, навпаки, її активність спадає.

У механізмі адаптації найпростіших до змін солоності води важлива роль належить і внутрішньоклітинним процесам, пов'язаним із синтезом осмотично активних речовин. Якщо інфузорія потрапляє в більш розпріснену воду, в її цитоплазмі зростає вміст таких амінокислот, як аланін, гліцин та пролін.

Аналогічний механізм регуляції обміну води за участю скорочувальних вакуоль характерний і для кишковопорожнинних.

Нижчі черви забезпечують регулювання обміну води і солей за допомогою так званих полум'яких клітин протонефридія (рис. 121). Цитоплазма такої клітини має гранулярну структуру і входить паростками в паренхиму тіла. Зсередини вона має порожнину, в якій розміщені численні вії, що при скороченні нагадують полум'я. Порожнина клітини переходить у тонкі трубочки, які утворюються з одно­го шару епітеліальних клітин. Зливаючись, вони формують більш широ­кі канали, які впадають у вивідний проток, що відкривається на поверхні тіла (протонефридії). Їх функціональне призначення – виділення води і продуктів метаболізму з тканинної гемолімфи шляхом їх активної секреції. Висловлюється думка, що у нижчих прісноводних червів вони виконують також осморегуляторну функцію, видаляючи надлишок води.

Рис. 121. Полум'яна клітина протонефридія нижчих червів:

1 – ядро; 2 – гранули секрету; 3 – розгалужені клітини; 4 – вії у внутрішньоклітинній порожнині; 5 – екскреторний канал

Спостереження за поліосмотичними пісковиками Arenіcola marіna (Polychaeta) під час їх перебування у літоральній зоні Кандалакшської Губи (Біле море), яка періодично опріснюється, показали, що вміст натрію і калію у їх організмі змінюється в тому ж напрямі, що і зміни солоності води. Евригалінність піскожила грунтується на процесах, які відбуваються на рівні клітини і забезпечують їх високу резистентність до ушкоджуючої дії гіпотонії.

У цьому процесі важлива роль належить механізмам внутрішньо­клітинної регуляції калію, концентрація якого у цитоплазмі може урівноважувати осмотичний тиск з навколишнім середовищем.

У коловерток видільний орган представлений протонефридіями, які відкриваються у клоаку. Протонефридії складаються з термінальних цибулин, всередині яких розміщені пучки вій, канальців та сечового міхура. Вода, що надходить в організм коловерток під час їх перебування у прісній воді, дуже швидко виводиться. Встановлено, що сеча утворюється із швидкістю 47·10–9 см3/хв. Разом з нею виділяється і натрій 0,63·10–9 мекв/хвил. Завдяки інтенсивному виведенню води у рідинах тіла коловерток підтримується більш висока концентрація Na+ і K+ ніжуводному середовищі. Так, при концентрації натрію у воді 4,2 мекв/дм3 у рідинах тіла його рівень досягав 21 мекв/дм3, а калію відповідно 1,7 і 7,0 мекв/дм3. Така різниця у концентраційних показниках Na+ і K+ свідчить про досить високу ефективність регулювання обміну води і солей у цих безхребетних.

Найбільш розбавлене внутрішнє середовище у прісноводних губок, кишковопорож­нинних та двостулкових молюсків. У них осмотична концент­рація мало відрізняється від водного середовища. Так, у гідри стебельчастої при перебуванні у середовищі з більш високою концентрацією солей, ніж у мезоглії (безструктурна речовина, до якої входять амебоцити та інші клітини), спостерігається зменшення тіла, а при перенесенні у гіпотонічне середовище, воно навпаки, набухає. При цьому вони можуть акумулювати калій і виводити із організму натрій, що важливо при адаптації до різкої зміни солоності води. У механізмі адаптації до різної солоності води у цих безхребетних важливу роль відіграє видільна система.

Тіло двостулкових молюсків жабурниць дуже проникливе для води, що і визначає невисоку осмолярність (42 мосм) їх внутрішнього середовища. При їх перенесенні з прісних вод (0,4 ‰) до солонуватих (близько 2 ‰) тіло молюсків швидко зменшується за рахунок віддачі води. У прісних водах гідростатичний тиск крові у цих молюсків становить близько 6 см водяного стовпа, а колоїдно-осмотичний тиск – лише 3,8 мм. При такому низькому колоїдно-осмотичному тиску у жабурниць досить легко може розвинутись гіпергідратація організму, а в солонуватих водах, навпаки, дегідратація. В умовах прісних вод підтримання водно-сольової стабільності тварин (гомеостазу) пов'язане з виділенням дуже розбавленої сечі (до 23,6 мосм), яка за об'ємом виведення за добу досягає близько 50 % об'єму тіла.

При різких змінах мінералізації води двостулкові молюски можуть утримувати на певний час відносну стабільність внутрішнього середовища, змикаючи (закриваючи) стулки. Це перериває контакт води зовнішнього сере­до­вища з м'якими тканинами тіла, які у цих молюсків легко пропускають воду.

Як і жабурниці, інші прісноводні молюски мають дуже низьку осмотичну концентрацію крові (57 мМ), а вміст Na+ і Ca++ в їхньому тілі залежить від концентрації у воді. При рівні вмісту у воді 0,35 мМ натрію його надходження в організм досягає 0,132 мкМ на грам маси тіла за 1 годину. Із такої кількості постійному обміну підлягає 0,053 мМ. При зменшенні концентрації натрію у крові його надходження з води може зростати майже у два рази.

Прісноводні молюски поглинають з води і іони Са++. При цьому із збільшенням вмісту кальцію у воді інтенсивність його надходження в організм зростає. Вони можуть утилізувати кальцій проти концентраційного градієнту (із середовища з меншою до більшої концентрації) при його дуже низьких концентраціях у воді.

У регуляції обміну води і солей у прісноводних молюсків важливу роль відіграє видільна система. Вона представлена протонефрідіями. Починається нефростомом, через який у нефридіальний канал надходить рідина, де вона і перетворюється у сечу. На відміну від червів, у молюсків немає чітко окресленої целомічної порожнини, а є лише порожнина статевих залоз та навколосерцева сумка, у яку і відкривається нефростом.

Нефридіальна система жабурниці отримала назву боянусова органа. Особливістю обміну води і натрію у молюсків є те, що внаслідок фільтрації рідини через стінку серця у перикардіальній порожнині утворюється рідина, яка ні за осмотичним тиском, ні за концентрацією розчинених у ній речовин не відрізняється від крові. Після проходження її через систему канальців боянусова органа і реабсорбції натрію та інших речовин осмолярна концентрація утвореної сечі стає дуже низькою (еквівалентна 0,06 % хлористого натрію). Вона становить лише половину осмотично активних речовин крові, яка і так дуже низька у жабурниці.

У представників різних кільчастих червів (поліхет, олігохет, п'явок), які мають вторинну порожнину тіла, система регуляції і обміну води і солей має багато спільного з протонефридіями, з тією різницею, що їх відгалуження не входять у паренхіму тіла, а контактують безпосередньо з целомічною рідиною. Такі структурні елементи видільної системи мають назву метанефрідії.

Функціонує метанефрідіальна система схожим чином із описаною вище видільною системою молюсків. Рідина, яка накопичується шляхом фільтрації у целомічній (вторинній) порожнині, далі проходить через трубки нефридіального каналу, де відбувається реабсорбція натрію та інших речовин, а утворена сеча стає приблизно у 7 разів більш гіпотонічною по відношенню до целомічної рідини.

У прісноводних олігохет підтримання більш високої осмотичної концентрації рідини по відношенню до навколишнього середовища здійснюється шляхом екскреції метанефридіями сечі, розведеної у 2–3 рази по відношенню до целомічної рідини, і утримання в організмі натрію і хлору.

У п'явок підтримання осмотичної концентрації рідин тіла при їх перебуванні у прісних водах здійснюється за загальними принципами виведення гіпотонічної сечі і утримання в організмі натрію, хлору та інших речовин.

У ракоподібних видільний орган складається із целомічного міхура, який сполучається отвором із губчастою структурою, або лабиринтом. Отвір за своєю структурою і функціональним призначенням є нефростомом, позбавле­ним вій. У прісноводних раків від губчастої структури (лабіринту) відходить вузький нефридіальний канал (30 мм), який утворює кілька завитків і закінчу­ється впадінням у сечовий міхур. Сечовий міхур відкривається біля антенн, що і визначило назву видільної системи (органу) – антенальна залоза (рис. 122).

Рис. 122. Схема видільної системи річкового рака (антенальна залоза):

1 – целомічний мішечок; 2 – лабіринт; 3 – нирковий канал; 4 – сечовий міхур; 5 – видільна пора (за Фомичев, 1986)

Функціонування цього органу здійснюється за фільтраційно-реабсорбцій­ним принципом, тобто фільтрат, який надходить у целомічний міхур і має схожу з кров'ю концентрацію хлоридів, при подальшому проходженні через лабіринт стає дещо більш концентрованим у зв'язку із засмоктуванням води і певної кількості іонів. Але при наступному проходженні через нефридіальний канал, де інтенсивно здійснюється реабсорбція хлоридів натрію, сеча стає обезсоленою і в такому вигляді виділяється назовні.

У прісноводних широконогих раків осморегуляція протікає за чітко вираженим гіпотонічним типом. У представників морської фауни сеча ізотонічна щодо крові. Морські ракоподібні не мають нефридіального каналу, де відбувається реабсорбція солей, яка для них непотрібна, оскільки основна функція видільної системи якраз і полягає у збереженні води і екскреції хлоридів, що надходять в організм із морською водою.

Пристосування личинок деяких комах, які на цій стадії можуть жити в різних за сольовим складом водах, пов'язане з наявністю спеціальних анальних пагорбків. Вони відрізняються за розмірами: у мешканців слабосолоних вод вони великі, у морських – маленькі. Ці утворення відіграють важливу роль в адаптації личинок комах до умов водного середовища (рис. 123). Так, у евригалінних личинок комара Aёdes mosquіto через ці пагорбки надходить в організм вода, поглинається натрій і хлор з навколишнього середовища. Абсорбція хлору відбувається вже при концентрації його у воді на рівні 0,2–0,5 мм, а натрію – 0,55 мм. Їх вміст у гемолімфі личинок комара може утримуватись на відносно постійному рівні при концентрації солей у воді, еквівалентній не більше 0,65 ‰ хлористого натрію. При більш високій мінералізації водного середовища осмотична концентрація гемолімфи змінюється відповідно із змінами концентрації солей у середовищі.

Рис. 123. Основні шляхи транспорту іонів і води у процесі осморегуляції у личинок комара Aëdes. H2O – пасивне надходження в організм; NaCl – активне поглинання з водного середовища; К+ – активне зворотне всмоктування калію у задній кишці (за Проссер, 1977)

Прісноводні личинки хірономід Chіronomus plumosus можуть адаптуватись лише у межах солоності води, що не перевищує 0,5 ‰, а личинки солонуватоводного Chіronomus salіnarіus виживають у досить широкому діапазоні солоності води (від 1 до 37 ‰).

Виведення надлишкової води і солей у личинок комах на стадії перебування у водному середовищі здійснюється мальпігієвими судинами і прямою кишкою.

– Конец работы –

Эта тема принадлежит разделу:

Динаміка водних мас та її роль у водних екосистемах

Лекція... Тема Абіотичні фактори водних екосистем... Динаміка водних мас та її роль у водних екосистемах...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Пойкілоосмотичні гідробіонти

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Динаміка водних мас та її роль у водних екосистемах
Під водною масою розуміють об’єм води, який співпадає з площею і глибиною котловин водних об’єктів або заглибленнями земної поверхні і має однорідні фізико-хімічні характеристики,

Фізико-хімічні властивості води та їх екологічне значення
Вода – найважливіша середовищеутворююча речовина, вплив якої на життєдіяльність організмів багатосторонній. Саме завдяки особливим властивостям води як універсального розчинника неорганічних і орга

Щільність води
Під щільністю розуміють масу одиничного об’єму води – кг/м3. Вона залежить від температури, наявності розчинних солей, а також від атмосферного тиску та вищерозташованих

Кольоровість води
Колір природних вод залежить від власного кольору розчинених у ній речовин, завислих частинок та мікроорганізмів, що населяють водну товщу. Забарвлення води зумовлено взаємовідносинами між водним с

Температурний та термічний режим водних об’єктів
Температурний режим водних об’єктів – це зміна температури води по акваторії і глибині на протязі певного проміжку часу. Коливання температури води у водних екосистемах можуть бути добові, місячні,

Льодовий режим
Зі зниженням температури до 0°С і нижче на водоймах і водотоках утворюється льодовий покрив. Період замерзання починається з появи кристалічних структур води (лід) спочатку біля берега, де течія не

Світло та його роль у функціонуванні водних екосистем
Світло надходить до земної поверхні у вигляді прямої і розсіяної сонячної радіації, які разом оцінюються як сумарна радіація. На її видиму частину спектру припадає

Седиментація, осадоутворення та формування донних грунтів
У товщі води постійно знаходиться певна кількість завислих часток мінерального і органічного походження. Під дією сили тяжіння вони поступово опускаються на дно. Процес осадження завислих частинок

Роль гідрофізичних факторів у життєдіяльності гідробіонтів
Турбулентне перемішування водних мас, їх температура, сонячна радіація та осадоутворення відіграють вирішальну роль у формуванні якості води та біологічної продуктивності водних екосистем. В зв’язк

Сольовий склад океанічних (морських) вод
Для вод відкритих океанів, незалежно від їх положення на Земній кулі, характерним є схожість у кількісному співвідношенні між основними іонами. Це пов'язано з тим, що маса солей в океанах настільки

Сольовий склад континентальних вод
На відміну від морських вод з однотипним сольовим складом, прісні води різних ландшафтних зон за складом головних іонів суттєво відрізняються. Згідно класифікації О.О. Альокіна (1970), природні вод

Евригалінні і стеногалінні гідробіонти
Солоність води є визначальним чинником у приуроченні водяних організмів до умов середовища. Саме за вмістом солей у воді можна поділити гідробіонти на морських і прісноводних. При цьому у високомін

Пристосування гідробіонтів до сольових факторів середовища
Пристосування гідробіонтів до солоності води пов'язане з регуляцією концентрації іонів у внутрішньоклітинній рідині та її осмотичного тиску. Концентрація неорганічних іонів у водному серед

Гомойоосмотичні гідробіонти
У прісноводних організмів концентрація біологічних рідин гіпертонічна по відношенню до водного середовища. Тому підтримання осмотичного тиску внутрішнього середовища є багатофункціональним процесом

Натрій, калій і цезій в водних екосистемах
Натрій, калій і цезій належать до групи лужних металів, які легко віддають один електрон, перетворюючись у позитивно заряджені іони. Саме завдяки цій властивості вони зустрічаються в природі виключ

Роль калію в метаболічних реакціях водяних рослин
Для водяних рослин характерним є досить високий вміст калію і значно менший – натрію в їхніх тканинних структурах. Калій у більшості рослин становить 0,9–1,2 % їх біомаси. Найбільша його кількість

Особливості обміну натрію і калію в організмі водяних безхребетних
Біологічна роль Na+ і K+ в життєдіяльності водяних тварин еволюційно визначилася ще в період становлення біосфери. За своїм іонним складом позаклітинна рідина водяних тварин м

Натрій і калій у морських і прісноводних рибах
Організм морських риб гіпоосмотичний по відношенню до морської води. Щоб підтримувати водний баланс, морські риби змушені постійно поглинати морську воду, з якою надходить в організм не тільки натр

Природний цезій в організмі гідробіонтів
Цезій належить до калієвої групи лужно-земельних металів. Він має один стабільний ізотоп і 21 радіоактивний. Після випробувань ядерної зброї та аварій на атомних електростанціях у гідросфері збільш

Кальцій у водних екосистемах
Кальцій – один з найголовніших іонів водних екосистем. Він переважає серед катіонів слабомінералізованих вод, а при зростанні загальної мінералізації його співвідношення з іншими хімічними елемента

Вміст кальцію в морських і океанічних водах
Океанічні (морські) води є водами хлоридного класу, групи натрію. Тому вміст Са2+ в них менший в порівнянні з поверхневими водами суші. Основна кількість кальцію надходи

Кальцій континентальних вод
Вміст кальцію в поверхневих водах суші дуже мінливий і може істотно відрізнятися в залежності від геологічних умов водозбірної площі та кліматичних умов. Води більшості озер, річок, водосховищ нале

Метаболічна роль кальцію та шляхи його надходження в організми гідробіонтів
Кальцій відіграє важливу роль у формуванні кісткового скелету, регуляції проникності клітинних мембран. Йому належить важлива роль у функціонуванні нервової, м’язової і залозистих тканин, синаптичн

Магній морських і континентальних вод
Серед елементів другої групи періодичної системи магній за своїми хімічними властивостями найближчий до кальцію. Він входить до складу більш ніж 100 мінералів, у тому числі бруситу Mg(OH)2

Форми міграції магнію у природних водах
У природних водах магній утворює сполуку з карбонатом – магнезит (MgCO3). Як і карбонат кальцію, він легко розчиняється у воді, яка містить розчинену вуглекислоту, внаслідок перетворення

Магній в організмі гідробіонтів
Вміст магнію в організмі гідробіонтів залежить від того, в якій воді – морській чи прісній вони мешкають. Так, у гемолімфі морських молюсків мідій (Mytіlus), устриць (Ostrea), морськи

Метаболічна роль магнію у гідробіонтів
Магній належить до іонів з дуже широким спектром дії. Він відіграє виключно важливу роль в активації ферментативних реакцій, які відбуваються у автотрофних і гетеротрофних організмів. У водоростей

Сірка природних вод та процеси сульфатредукції
Сірка зустрічається в природі як в самородному вигляді, так і в різних сполуках та газоподібному стані, у вигляді сірководню та оксиду сірки. Легкорозчинні сульфати сірки знаходяться у великій кіль

Форми розчиненого заліза у водних екосистемах
В океанічній воді, при загальній її солоності 34,5–35,0 ‰, концентрація заліза може коливатись у межах 0,005–0,14 мкг/дм3. На глибині 50 м міститься в середньому до 20 мг/м3 з

Роль заліза у ферментативних реакціях та процесах дихання гідробіонтів
Залізо відіграло виключно важливу роль в еволюції біосфери. Як складовий компонент металопорфірінів воно стало основою для утворення хлорофілу, дихальних ферментів і дихальних білків. Залізо входит

Марганець
Марганець належить до металів із змінною валентністю (Mn2+, Mn4+, Mn7+), що визначає його участь у окиснювано-від

Кобальт
Кобальт належить до елементів, які утворюють сполуки практично з усіма галогенами (CoF2, CoF3, CoCl2, CoBr2, CoІ2). Всі галогеніди двовалентно

Кадмій, хром, алюміній
Серед мікроелементів, які при певних концентраціях у воді виявляють високу токсичність, є особливо небезпечні забрудники водного середовища, які в мікродозах негативно впливають на функціональний с

Кругообіг кисню в водних екосистемах. Формування кисневого режиму водних екосистем
Основним джерелом кисню у воді є його проникнення з повітря та виділення фотосинтезуючими рослинами. Внаслідок фотосинтезу відбувається окиснення води з виділенням молекулярного кисню і відновлення

Роль кисню в розкладі органічних речовин та формуванні якості води
Кисень водних екосистем відіграє виключно важливу роль у процесах розкладу розчинених органічних речовин, відмерлих рослин і тварин, при яких складні органічні речовини перетворюються на прості (СО

Роль кисню у життєдіяльності гідробіонтів
Підтримання життєдіяльності гідробіонтів тісно пов’язане з енергетич­ними процесами, які грунтуються на окиснювано-відновних реакціях, що протікають за участю кисню. Розщеплення молекул білків, жир

Особливості використання гідробіонтами кисню з води
У процесі еволюції у гідробіонтів різних трофічних рівнів сформувались механізми адаптації до більш низького рівня кисню у воді в порівнянні з атмосферним повітрям. Як відзначає В.І. Вернадський, “

Хімічні та біологічні перетворення діоксиду вуглецю у водних екосистемах
Основними джерелами надходження діоксиду вуглецю у водне середовище є його інвазія з атмосфери, дихання гідробіонтів, виділення із солей вугільної кислоти в результаті хімічних реакцій та процеси г

Фотосинтез. Фіксація вуглекислоти автотрофними і гетеротрофними організмами
Метаболічна роль діоксиду вуглецю тісно пов’язана з фотосинтезом – одним із найбільш фундаментальних і важливих процесів біосфери. Процес фотосинтезу в гідросфері пов’язаний з діяльністю р

Адаптація риб до змін вмісту СО2 у воді
Спостереження за поведінкою риб різних видів і вікових груп свідчать, що поряд з позитивним впливом розчиненого у воді СО2 на їх організм, мають місце прояви негативних реакцій. Такі різ

Азотфіксація у водних екосистемах
Азотфіксація – це засвоєння молекулярного азоту повітря за допомогою мікроорганізмів-азотфіксаторів. Основну масу азоту на Землі (4,6×1017 т) становить молекулярни

Використання азоту в біосинтетичних процесах водоростей
Як морські, так і прісноводні водорості можуть засвоювати неорганічні сполуки азоту (нітрати NO3–), нітрити (NO2–) та а

Алохтонний і автохтонний азот водних екосистем
Між сполуками азоту, які надходять у водойми іззовні (алохтонними) і тими, які утворюються в них за рахунок відмирання гідробіонтів (автохтонними), існує певна якісна різниця. Органічна біомаса наз

Амоніфікація, нітрифікація і денітрифікація та їх роль в кругообігу азота в водних екосистемах
Процес розкладу органічних азотистих речовин, або амоніфікація, незалежно від джерел їх надходження у водойми, відбувається за участю мікроорганізмів і закінчується утворенням вільного аміаку (NH

Неорганічний та органічний фосфор водних екосистем
У морських водах неорганічний фосфор представлений в основному фосфорною кислотою Н3РО4 та продуктами її дисоціації (H2PO4–,

Вміст фосфору в організмі гідробіонтів і його метаболічна роль
Про вміст фосфору в організмі гідробіонтів свідчать такі дані. В сухій масі морського планктону міститься близько 0,42 % фосфору; в організмі бактерій він становить 3 %, бурих водоростей – 2,8 % і

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги