рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Преобразования Лоренца.

Преобразования Лоренца. - раздел Право, Тепловое излучение. Закон Кирхгофа   Допустим, Что Один Из Законов Физики, Полученный Относительно...

 

Допустим, что один из законов физики, полученный относительно системы отсчета S, имеет вид

f (x, y, z, t . . . )=0,

 

а относительно системы отсчета S' имеет вид

 

. f' (x', y', z', t' . . . )=0

 

Согласно принципу относительности, функции f и f' должны иметь одинаковый вид. Это возможно, если между результатами измерения физических величин относительно S и S' существуют определенные соотношения. А. Эйнштейн показал, что из двух принципов его теории следует, что координаты движущихся тел и время, измеренные отно­сительно S и S', связаны между собой преобразованиями Лоренца.

Действительно, возьмем две координатные системы: нештрихованную XYZ (условно неподвижную) и штрихованную X 'Y ' Z' (условно подвижную, рис. ), находящиеся в относительном движении. Оси обеих систем возьмем параллельными, постоянную относительную скорость υ системы X 'Y 'Z' относительно системы XYZ направим вдоль оси ОХ и предположим, что в исходный момент времени (t=0; t'=0) начала координат обеих систем совпадают.

При этих условиях легко показать, что координаты у и г преобразуются очевидным соотношением:

у'=у; z’ = z,

и мы ими заниматься не будем. Рассмотрим, как преобра­зуются координата x: и время t. Возьмем точку, соответ­ствующую началу координат подвижной системы; ее коор­дината х', очевидно, равна нулю:

x’=0 (1)

Координата х этой же точки (в неподвижной системе) в момент времени t (отсчитанный в неподвижной системе) равна:

x=υt

Это равенство перепишем в виде:

x - υt = 0 (2)

 

Сопоставляя равенства (1) и (2), замечаем, что в одной и той же точке пространства обращаются в нуль величины х’ (в штрихованной системе) и x - υt (в нештрихованной), по­этому естественно предположить, что х' и x - υt для любых моментов времени отличаются друг от друга лишь постоян­ным множителем а:

x’ = а(x - υt) (3)

Теперь рассмотрим точку, соответствующую началу коор­динат неподвижной системы; ее координата х в этой системе равна нулю:

x = 0 (4)

В подвижной системе эта же точка в момент времени t’ (отсчитанный в подвижной системе) имеет координату x’, равную:

x’= - υt

откуда для этой точки имеет место равенство:

x’ + υt’ = 0

Сопоставляя последнее равенство с равенством (4), характери­зующим ту же точку в другой системе, положим, как и выше:

х =a (x’ + υt’). (5)

То, что коэффициенты пропорциональности а формул (3) и (5) должны быть одинаковыми, легко показать, основываясь на опытном положении об эквивалентности обеих систем, т. е. на невозможности установить, какая из систем нахо­дится в абсолютном движении.

Для нахождения закона преобразования надо определить коэффициент а. Используем для этого опытный факт, согласно которому скорость светового сигнала, измеренная в обеих системах, даст одно и то же значение с. Пустим световой сигнал в момент совпадения обоих начал координат (этот момент в обеих системах будем считать начальным: t = t’ = 0) в направлении оси ОХ (О'Х'}. В произвольные моменты t(t’) сигналы в обеих системах будут доходить до точек, коор­динаты которых определятся соответственно равенствами:

x=ct; x’=ct’ (6)

Перемножим уравнения (3) и (5) и подставим в получен­ный результат вместо х и х' их значения по (6); после сокра­щения найдем:

c2=a2(c2υ2);

для а возьмем положительное значение корня этого уравнения:

 

Найденное значение а позволяет написать преобразование координат в виде:

;

Отсюда легко найти и преобразование времени. Из второго равенства получаем:

Подставляя х' из первого соотношения, найдем:

 

Решая это равенство относительно t’, получим:

 

Аналогичным приемом получим для t:

 

Объединяя все полученные соотношения, напишем выражение координат и времени в подвижной системе через координаты и время в неподвижной:

 

y’=y; z’=z; (7)

 

и выражение координат и времени в неподвижной системе через координаты и время в подвижной:

 

y=y’; z=z’ (8)

 

Формулы (7) и (8) выражают преобразование координат и времени при переходе от одной системы отсчета к другой. Преобразования такого вида называются преобразованиями Лоренца. Преобразования Лоренца (7) и (8) переходят в преобра­зования Галилея при стремлении к нулю отношения β = υ/c. Заметим, что штрихованная и нештрихованная системы экви­валентны и преобразование (7) получается из преобразова­ния (8) заменой знака относительной скорости. Преобра­зования Лоренца выведены из опытных положений. Теория относительности обобщает этот вывод и считает, что всякий физический закон должен удовлетворять преобразованием Лоренца. Это означает, что закон природы, выраженный математически в координатах одной системы, должен сохра­нять свой вид при переходе к координатам другой системы по формулам (7) или (8), т. е. должен быть инвариан­тен по отношению к преобразованию Лоренца. Уравнения механики Ньютона, будучи инвариантными по отношению к преобразованию Галилея, не инвариантны по отношению к преобразованию Лоренца. Развитие идей теории относи­тельности привело к изменению уравнений Ньютона в том смысле, что были установлены уравнения механики, инва­риантные по отношению к преобразованию Лоренца и перехо­дящие в уравнения Ньютона в предельном случае бесконечно малого отношения β = υ/c. Проверка следствий новых урав­нений механики на опыте показала правильность этих новых уравнений. Что же касается уравнений электродинамики (ура­внений Максвелла), то они оказались инвариантными относи­тельно преобразований Лоренца. Таким образом, выяснилось, что законы классической физики в области электромагне­тизма удовлетворяют требованиям теории относительности, а в области механики (ньютоновской) справедливы лишь для скоростей υ « c и в общем случае требуют изменений. Обратим внимание на то, что для скоростей υ > с преобразования Лоренца теряют смысл. Это соответствует тому, что тела не могут двигаться со скоростями, превышающими скорость света.

 

– Конец работы –

Эта тема принадлежит разделу:

Тепловое излучение. Закон Кирхгофа

Лазеры... Лазеры или оптические квантовые генераторы это современные когерентные источники излучения обладающие целым рядом...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Преобразования Лоренца.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Тепловое излучение. Закон Кирхгофа
  Тепловое излучение — это электромагнитное излучение, возбуждаемое за счет энергии теплового движения атомов и молекул. Если излучающее тело не получает теплоты извне, то оно охлажда

Законы излучения абсолютно черного тела
  Спектральная плотность излучения абсолютно черного тела является универсальной функцией длины волны и температуры. Это значит, что спектральный состав и энергия излучения абсолютно

Фотоэффект
Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было вы

Специальная теория относительности.
  В классической физике до появления теории относительности (1905 г.), предполагалось, что любой физический процесс, использо­ванный (как «эталонный») для измерения времени, выявляет

Следствия из преобразований теории относи­тельности.
  Рассмотрим наиболее важные следствия преобра­зований Лоренца.   а) Длина тел в разных системах. Преобразова­ния Лоренца показывают, что одно и то же

Механика теории относительности.
  Рассуждения, приведенные выше, показывают, что оптические (и электро­магнитные) явления подтверждают кинематику теории отно­сительности, вытекающую из преобразований Лоренца. Есте­с

Эффект Комптона
  Рисунок 3 Особенно отчетливо проявляются корпускулярные свойства света в явлении, которое получило название

Постулаты Бора. Опыт Франка и Герца
В предыдущем параграфе было выяснено, что ядерная модель атома в сочетании с классической механикой и электродинамикой оказалась неспособной объяснить ни устойчивость атома, ни характер атомного сп

Волновые свойства частиц. Соотношение неопределенностей.
  В 1923 году произошло примечательное событие, которое в значительной степени ускорило развитие квантовой физики. Французский физик Луи де Бройль выдвинул гипотезу об универсальности

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги