рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Материаловедение

Материаловедение - раздел Философия, Материаловедение ...

Материаловедение

Типы межатомных связей. Влияние на свойства материалов.

  2. Кристаллические и аморфные материалы. Кристаллическое строение. Основные… Кристаллическое тело характеризуется правильным расположением атомов в пространстве. У аморфных веществ расположение…

Дефекты кристаллического строения. Кристалл зерно.

  7. Первичная кристаллизация металлов, законы кристаллизации. Первичная кристаллизация – переход из жидкого состояния в твёрдое. Энергетические условия первичной кристаллизации: из…

Зерно в сплавах. Влияние величины зерна на свойства.

  10. Сплавы. Основные понятия и термины: сплав, компонент, фаза, структура,… Сплавы – это вещества, состоящие из двух или более элементов периодической системы. Получают их с помощью спекания или…

Сплавы. Деформируемые и литейные сплавы. Особенности строения и свойства.

Напряжение σ = P/F0, P – действующая нагрузка, F0 – площадь образца, которую он имеет в начале испытания на растяжение. Важнейшая… σТ – предел текучести, для пластичных материалов σТ » 0,5σВ.…  

Способы упрочнения сплавов.

  16. Деформация упругая и пластическая. Упрочнения металлов при пластической… Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки. При…

Рекристаллизация сплавов, влияние на структуру и свойства. Температура рекристаллизации по А.А. Бочвару.

  19. Диффузионные и бездиффузионные процессы в металлических сплавах, влияние… Бездиффузионные характеризуются перемещением атомов в пределах элементарной ячейки крист. решётки, высокой скоростью.…

Дисперсионное твердение. Сплавы, упрочняемые дисперсионным твердением.

  22. Понятие о термической обработке сплавов. Отжиг, закалка, старение… Термическая обработка – изменение структуры и свойств материала в результате нагрева и охлаждения в твёрдом состоянии.…

Равновесные структуры в сталях. Их свойства и условия получения.

Диаграмма состояния представляет собой графическое изображение состояния сплава. Если изменяется состав сплава, его температура, давление и состояние сплава также изменяется, то это находит графическое отображение в диаграмме состояния. Она показывает устойчивые состояния, т.е. состояния, которые при данных условиях обладают минимумом свободной энергии. Поэтому диаграмма состояния может также называться диаграммой равновесия, так как она показывает, какие при данных условиях существуют равновесные фазы.

 

Стали. Классификация по качеству, структуре, назначению.

По структуре: технически чистое железо (0,006;0,02), доэвтектоидная (0,02;0,8), эвтектоидная (0,8) и заэвтектоидная сталь (0,8;2,14). Доэвтектоидная сталь: Ф+П, П – тёмный, твёрдый, HB 180, Ф – светлый, более мягкий, пластичный, HB 80. Эвтектоидная сталь: 100% П. Заэвтектоидная сталь: П+Ц. Ц – HB 800, П - HB 180. В процессе медленного охлаждения выделяется ЦII по границам зёрен в виде сетки.

По назначению: 1) строительные до 0,03% C, металл легко деформируется, эти стали не закаливают, они не упрочняются; 2) машиностроительные, или конструкционные 0,3-0,6% C (валы, оси, детали машин), их можно закалить (изменить свойства), упрочняются за счёт термической обработки; 3) инструментальные 0,7-1,3% C, высокая прочность, твёрдость.

По качеству: 1) стали обыкновенного качества, самые дешёвые, плавка идёт всего 30 мин, примеси все не удаётся удалить (S 0,05% и P 0,05%), слитки крупные » 10 т, ликвация сильная, пустоты отрезают, прибыль небольшая; 2) стали качественные, получаются мартеновским способом, S и P до 0,04% в сталях, разливаются в меньшие слитки, меньше ликвация, более дорогие, выше качество, делятся на конструкционные и инструментальные, качественные стали подвергаются упрочняющей термической обработке, поэтому в них важно знать содержание C; 3) кипящие стали, классифицируются по содержанию Si, в некоторых случаях можно понизить содержание Si для штампуемых сталей, Si – сильный раскислитель, C выводит O из стали (жидкого Me), создаётся вид, что сталь кипит, чем больше Si, тем спокойнее сталь, CO ослабляют Me, нужно, чтобы предел текучести был низким, используется для холодной штамповки; 4) высококачественные, получают в электропечах, выше температура, легче удалять вредные примеси; 5) автоматные стали, для обработки на станках-автоматах, стружка должна ломаться (мелкая), в стали оставляют повышенное содержание S до 0,1%, а P до 0,06%, это грязные стали, но хорошо обрабатываемые резанием (болты, шайбы); 6) легированные стали, Х - Cr, Г - Mn, Н - Ni, К - Co, В - W, Ф - V, Т - Ti, С - Si, Ю - Al.

 

Влияние примесей в стали. Классификация сталей по качеству в ГОСТ. Марки сталей.

Бывают вредные: S, P,O, N и полезные: Mn, Si. Сера попадает из кокса вместе с углём. Наиболее чистый древесный уголь, шведские стали самые чистые, т.к. делают на древ. угле. Сера вызывает красноломкость (в процессе прокатки сталь расслаивается, разъезжается). Обычно S в стали 0,02-0,05%. Сера увеличивает хрупкость стали. Влияние фосфора. Попадает из железной руды, создаёт хладноломкость – резкое снижение ударной вязкости при отрицательных температурах. P повышает температуру перехода в хрупкое состояние. Фосфор (много) должен снижать хладноломкость. Кислород, азо вызываю синеломкость. Немцы первые объяснили это явление. Если работают при 300-350° C, и сталь вдруг ломается, поверхность разлома синего цвета (паровые установки). Оказалось, что в структуре образуются нитриды Fe4N на границах зёрен. В сталь добавляется Al » 4г на тонну стали. Al связывает нитриды, синеломкость устраняется. Марганец имеется в стали 0,5-1,5%, иногда вводится дополнительно. Mn уводит S в шлак, освобождая сталь от S, снижает красноломкость. Mn – хороший раскислитель, отбирает кислород у стали. Mn ~ 0,5% в стали. Кремний действует подобно марганцу, является раскислиелем. Влияет сильнее, чем Mn. Si ~ 0,3-0,5% требуется. Si повышает предел текучести стали. Поэтому кремния много не вводится в сталь Штампуемая низкоуглеродистая сталь.

По качеству: 1) стали обыкновенного качества Сталь0 … Сталь3 … Сталь6, Ст.0 … Ст.3 (0,15-0,22% C)… Ст.6, углерод увеличивается; 2) стали качественные: конструкционные, C меньше 0,7% Сталь 08, 10, …45 …60, содержание C в стали в сотых долях % и инструментальные, C больше 0,7% У7…У13, содержание C в десятых долях; 3) кипящие стали 08КП (меньше Si, кипящая), С (больше Si, спокойная), ПС (полуспокойная); 4) высококачественные У7А … У13А; 5) автоматные стали А45Г (0,45% C, Г - Mn); 6) легированные стали 12ХН3А (0,12% C, Х - Cr 1,5%, Н - Ni 3%, А - высококачественная), ЭН-17…1000 (завод «Электросталь»), ЭП-1…1000, ЭК.

 

Стали, марки сталей. Область применения.

  28. Стали марок Ст.4, 40. Состав, свойства и назначение в промышленности. Ст.4: сталь общего назначения, обыкновенного качества, σВ (410-530) МПа или (42-54) кгс/мм2, σТ не менее 245…

Стали. Превращения в стали при нагреве и охлаждении. Критические точки стали по Д.К. Чернову.

Кривая охлаждения чистого железа. Остановки – критические точки, обозначаемые A. Их различают при нагреве и… Превращения в стали.

Влияние кремния, марганца и фосфора на свойства чугуна.

  33. Чугуны. Классификация чугунов по структуре. Марки чугунов по ГОСТ. 2,14-3,7% С. свойства чугуна зависят от структуры и от формы C, находящейся в структуре. Чугуны: Fe3C – белые чугуны…

Чугуны с графитом. Классификация. Области применения.

В зависимости от формы графитовых включений: серый на ферритной, феррито-перлитной и ферритной основах – пластинчатый графит, ковкий на ферритной, феррито-перлитной и ферритной основах – хлопьевидный графит, высокопрочный – шаровидный графит. Лучшие литейные свойства по сравнению со сталью. Более низкая температура плавления и окончание кристаллизации при постоянной температуре (образование эвтектики) обеспечивают не только удобство в работе, но и лучшие жидкотекучесть и заполняемость формы. Описанные преимущества чугуна делают его ценным конструкционным материалом, широко применяемым в деталях машин, когда детали не испытывают значительных растягивающих и ударных нагрузок.

 

37. Серые чугуны: применение в промышленности.

Название чугун получил по виду излома, который имеет серый цвет. Структуры: П (0,8% C) +Гр, П + Ф (меньше 0,8% C)+Гр, Ф +Гр (весь углерод, имеющийся в сплаве, присутствует в форме графита). Графит пластинчатой формы. Графитовые включения можно считать в первом приближении просто пустотами, трещинами. Чем больше в чугуне графита, тем ниже его механические свойства, чем грубее включения графита, тем больше они разобщают металлическую основу, тем хуже свойства чугуна. При растягивающих нагрузках облегчается образование очагов разрушения по концам графитных включений. Ценный конструкционный материал, широко применяемый в деталях машин, главным образом тогда, когда они не испытывают значительных растягивающих и ударных нагрузок.

 

38. Высокопрочный чугун.

Включения в виде шаровидного графита. У него более высокая прочность. Маркировка: ВЧ 45-12 (макс. Ф), ВЧ 60-5 (макс. П), 45 и 60 – предел прочности, 12 и 5 – относительное удлинение (до 15). Эти чугуны пластичные. Это литейный сплав. Чугун прочнее стали. Магний (Mg) добавляется в эти чугуны в расплавленном виде, часто Mg возгорается и получение сопровождается взрывами. Mg вводится для образования шариков. Шарики более компактны, концентраторов напряжения мало.

 

39. Ковкий чугун. Способы получения. Структура и свойства.

Включения графита в виде хлопьев. Получается такой чугун в две стадии: получение белого чугуна (отливка до 10 кг), графитизирующий отжиг (томление). Углерода в ковком чугуне 2,4-2,8%. Графитизированный ковкий чугун плавят в электропечах. Получили ферритовый ковкий чугун, более пластичный. На П+Ф-основе. Если закончился процесс графитизации при 725°, по получаем перлитный ковкий чугун (более прочный).

 

40. Сплавы на основе меди. Латуни. Структура и свойства.

Медь: tплавления = 1084°C, низкий коэффициент трения, высокая электропроводность, высокая теплопроводность, высокая устойчивость против коррозии, низкая прочность σВ ≈ 25 кгс/мм2, пластичность высокая δ = 40%. Сплавы меди. Создание сплавов приводит к повышению прочности, улучшению коррозионной прочности и снижению температуры плавления. Zn явл. легирующим компонентом. Сплавы Cu с Zn – латуни. Бронзы – сплавы с др. компонентами. Al + Cu – алюминиевые бронзы, Be + Cu – бериллиевые, Sn + Cu, … Особенности влияния компонентов на структуру.

л.к. – легирующий компонент, х.с. – хим. соединение. Если полиморфные превращения, значит перекристаллизация. I Сплавы – твёрдые растворы (однофазные сплавы, высокая прочность + высокая пластичность), II Механические смеси (α + х.с. – двухфазные: более высокая прочность), III Хим. соединения (хрупкие) – редко исп. В промышленности.

 

Сплавы на медной основе, латуни Л-80 и ЛС-59-1.

α – тв. р-р Zn в меди, β и β′ - хим. соединения, β′ - более хрупкое. Сплавы, в которых много β и β′,… Латуни: 1) красные латуни, самые дорогие, цинк – жёлтый, медь красная, красные…  

Сплавы на основе алюминия. Литейные алюминиевые сплавы. Структура, свойства и назначение в промышленности.

Обычно в литейных сплавах силуминах содержится 12-13% Si. Структура этих сталей при охлаждении состоит из грубой эвтектики [Al+Si] и хрупких зёрен…  

Полимеры. Типы межатомных связей. Структура термопластичных и термореактивных полимеров. Реакции образования полимеров.

  47. Механические свойства полимеров. Состояние аморфной фазы и её влияние на… Свойства полимеров определяются: природой мономера, молекулярной массой полимера, структурой полимера (кристаллический…

Пластмассы. Классификация и состав пластических масс.

Пластмассы – это органические вещества, связующими которых являются полимеры. Они состоят из: 1) связующее (матрица) - полимеры; 2) наполнители (низкомолекулярные в-ва), их вводят для придания специальных св-в: понижения усадки, повышения мех. св-в (твёрдость HB, σВ, σТ). Наполнители: порошковые (сажа, графит, древесная мука), волокниты (волокна, стекловолокна, асбоволокна), слоистые (геминакс, текстолит), стеклоткань (стеклотекстолиты), газовые (газонаполненные: поропласты, пенопласты, сотопласты); 3) пластификаторы – жидкие вещества, для повышения эластичности материала; 4) отвердители; 5) краски (оксиды металлов), их вводят для изменения цвета пластмасс. Пластмассы: термопластичные, термореактивные и газонаполненные.

 

50. Термопластичные пластмассы. Свойства, область применения (на примере полиэтилена и фторопласта).

1. Полиэтилен (ПЭ). Состав мономера: [–CH2–CH2–]n. Этилен [–CH2–CH2–] при комнатной t находится в газовом состоянии, t кипения составляет -140°C. ПЭ бывает двух видов: 1)Низкой плотности высокого давления ПЭНП (ПЭВД), разветвлённая структура, плотность ρ = 0,91-0,92 г/см3, tэкспл = -70¸120-140°C, tплавл = 110-125°C; 2) ПЭВП (ПЭНД), линейная структура, ρ = 0,96 г/см3, tэкспл = -70¸140-150°C, tплавл = 150°C. Недостаток – старение ПЭ. При воздействии ионизованного излучения увеличивается прочность материала и теплостойкость. Применение: упаковочная плёнка, литьё бутылок, трубы, электроизоляционный кабель.

2. Фторопласт (ФП). Состав мономера: [–CF2–CF2–]n. ФП обладает аморфной кристаллической структурой. Плотность ρ = 0,25, tэкспл. = -269 ¸ +250°C. Химически стоек к действию растворителей. ФП обладает очень низким коэффициентом трения μ = 0,04. Недостаток ФП: трудность его переработки. Применение: насосы, винтили, антифрикционные покрытия.

 

51. Термореактивные пластмассы. Свойства, область применения (на примере текстолитов).

Текстолит относят к слоистым пластикам. Связующее в этом полимере – это термореактивные смолы. Наполнители: хлопчатобумажные ткани. Среди всех слоистых пластиков этот материал обладает наибольшей способностью поглощать вибрационные нагрузки. Кроме этого хорошо сопротивляется раскалыванию. Применяют для зубчатых колёс и как вкладыши для подшипников. Температура эксплуатации: -60 ¸ 60-80°C.

 

52. Газонаполненные пластмассы. Строение. Область применения.

Это гетерогенные (сост. из нескольких фаз) химически сложные системы, состоящие из твёрдой и газообразной фаз. В качестве связывающего используются термопласты (или реактопласты), которые образуют стенки ячеек или пор. В качестве наполнителей используют газообразные в-ва. В зависимости от физической структуры газонаполненные пластмассы делят на пенопласты, поропласты и сотопласты. Пенопласт – система, в которой присутствуют замкнутая ячеистая структура, а газовый наполнитель изолирован от окр. среды тонкими слоями полимерного связующего. Замкнутая ячеистая структура обеспечивает высокие теплоизоляционные св-ва и хорошую плавучесть. Прочность таких материалов низкая и зависит от плотности материала. ρ = 20-300 кг/м3. Применяется для изоляции кабин, холодильников, рефрижераторов, труб (поропласт), в авиа-, кораблестроении, на ж/д транспорте. Поропласт – материал с открыто-пористой структурой. Применяется для впитывания жидкости. ρ = 130-500 кг/м3. Сотопласты – тонкие листовые материалы, выполненные в форме гофра, которые затем сшиваются в виде пчелиных сот. Материалом для гофров служат ткани, которые пропитываются различными связующими. Применение: тепло- и звукоизоляционные материалы (авиация), обладают радиопрозрачностью, используются для заполнения многослойных панелей в авиа- и судостроении.

 

Эластомеры и резины. Процесс вулканизации.

 

Пластмассы как конструкционный материал.

  55. Стекло. Строение. Классификация по составу. Влияние состава на свойства.… Неорганическое стекло – химически сложные аморфные изотропные материалы, которые обладают свойствами хрупкого твёрдого…

Механические свойства стекла. Методы повышения прочности.

Способы упрочнения стёкол: 1) травление с целью удаления дефектного поверхностного слоя. Предел прочности увеличивается до 3000 МПа. Но этот способ…  

Ситаллы.

Ситаллы – частично закристаллизовавшиеся стёкла. По структуре от обычных стёкол отличаются тем, что в них водят затравки (это соли серебра, золота, меди, свинца и т.д.). Эти стёкла непрозрачны. По способу получения ситаллы различаются на фотоситаллы и термоситаллы.

– Конец работы –

Используемые теги: Материаловедение0.042

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Материаловедение

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

КОНСПЕКТ ЛЕКЦИЙ по курсу Архитектурное материаловедение Конспект лекций по курсу Архитектурное материаловедение
ФГОУ ВПО ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ... ИНСТИТУТ Архитектуры и искусств... КАФЕДРА ИНЖЕНЕРНО строительных ДИСЦИПЛИН...

Тесты1 Материаловедение
Тесты Материаловедение... Основные свойства материалов Основы теории... Легированные стали и сплавы Цветные металлы и сплавы на их...

Тест № 1 Материаловедение В тесте должно быть не менее 20 вопросов по 4 разделам
Раздел... Металлическая связь это способность валентных электронов свободно перемещаться по всему объему кристалла...

По дисциплине Материаловедение
ВПИ филиал ВолгГТУ... Кафедра ВТО... Семестровая работа...

Материаловедение и технология конструкционных материалов
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ... Тюменский государственный нефтегазовый университет... Сургутский институт нефти и газа филиал...

Лекция 1 Предмет изучения материаловедения
Объектом изучения материаловедения являются металлы сплавы стеклообразные и керамические мат лы композиционные мат лы... Основной задачей м ведения явл экспериментальное изучение зависимостей... Основными факторами влияющими на физ св ва мат ла сточки зрения м ведения являются структура мат ла и его фазовый...

Материаловедение
среднего профессионального образования... Нефтяной техникум... Материаловедение контрольное задание для студентов заочников образовательных учреждений среднего профессионального образования по специальности...

Перечень вопросов по дисциплине Материаловедение
Классификация ассортимента парфюмерно косметических изделий... Классификация ассортимента косметических изделий по... функциональному действию...

Дисциплина Материаловедение
ТЕСТЫ... дисциплина Материаловедение...

Понятие науки строительное материаловедение
В строительстве используют большое количество разнообразных материалов По назначению строительные материалы принято делить на следующие группы... вяжущие строительные материалы воздушные вяжущие гидравлические вяжущие... стеновые материалы ограждающие конструкции К этой группе относятся естественные каменные материалы керамический...

0.033
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам