рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Використовуваних радіочастот

Використовуваних радіочастот - раздел Образование, Основи радіоелектроніки   Першим Технічним Застосуванням Радіоелектроніки Було Передава...

 

Першим технічним застосуванням радіоелектроніки було передавання інформації на відстань за допомогою електромагнітних хвиль, або радіохвиль. Для його здійснення треба, утворити канал радіозв'язку, що складається з радіопередавача, середовища, в якому поширюється радіосигнал, і радіоприймача (рис. 8.1).

Основними фізичними процесами в каналі зв'язку є: генерація високочастотного коливання; перетворення сигналу повідомлення на електричну форму і здійснення ним модуляції високочастотного коливання; випромінювання модульованого високочастотного сигналу передавальною антеною у відкритий простір у вигляді радіохвилі; приймання корисного сигналу приймальною антеною на (фоні численних завал: виділення з них корисного сигналу; його підсилення і перетворення на форму, зручну для використання.

Залежно від способу перетворення повідомлень на електричні сигнали їх перетворювачами можуть бути телеграфний ключ при радіотелеграфному способі зв'язку, мікрофон при телефонії та радіомовленні, телевізійна передавальна трубка для перетворення зображень, електричні датчики спеціального призначення для передавання повідомлень про будь-які неелектричні величини або процеси. Частота високочастотного сигналу, який модулюють сигналом повідомлення, залежить від спектрального складу останнього, способу модуляції й умов поширення радіохвиль у просторі. В сучасних каналах радіозв'язку по кабельних і світловодних мережах передавання сигналів можна здійснювати без випромінювання у відкритий простір.

У приймальній антені сигнал радіостанції, на носійну частоту якої настроєно радіоприймач, створює струми високої частоти. Проте випромінювання решти радіостанцій, а також широкосмугові атмосферні, космічні, промислові та побутові випромінювання створюють у приймальній антені численні додаткові струми. Отже, основним завданням оброблення сигналу на приймальному кінці каналу зв'язку є виділення підсилення, перетворення на сигнали повідомлення (демодуляція) і форму, зручну для подальшого використання. Такою формою можуть бути надрукований текст, звук, зображення на екрані, цифри або текст на дисплеї, графіки, побудовані самописними приладами, керувальні сигнали для виконавчих механізмів тощо.

Рис. 8.1. Структура каналу радіозв'язку

 

Однією з основних властивостей систем радіозв'язку і радіомовлення є їхня багатоканальність, яка забезпечується модуляцією і рознесенням носійних частот, тобто через одне й те саме середовище (або по одній лінії зв'язку) одночасно передається інформація по кількох незалежних каналах зв'язку. Кожен із цих каналів характеризується носійною частотою і смугою частот навколо неї, яку він займає. Ширина цієї смуги залежить від інформативності каналу, тобто від кількості інформації, що передається за одиницю часу. Таким чином, на спільній шкалі радіочастот для кожного каналу зв'язку виділено певну смугу частот, а капали, смуги частот яких межують між собою, називають сусідніми каналами. Для зручності всю шкалу радіочастот поділено на діапазони з урахуванням деяких особливостей поширення і властивостей окремих ділянок електромагнітного спектра.

Розподіл радіохвиль за діапазонами досить умовний і різкої межі між сусідніми діапазонами немає: особливості одного діапазону досить плавно трансформуються в особливості сусіднього. Проте особливості поширення радіохвиль у навколишньому середовищі з урахуванням властивостей земної кори та стану атмосфери значною мірою визначають використання того чи іншого діапазону для потреб передачі й оброблення інформації. Міжнародними угодами прийнято розподіл радіохвиль за діапазонами згідно з декадним принципом, який ілюструє табл. 8.1.

Атмосфера Землі є неоднорідною газовою оболонкою, в якій можна ви ліпити по висоті три характерні частини (рис. 8.2): тропосферу (до 50 км), стратосферу (до 90 км) та іоносферу. Останню утворюють іонізовані пш дією сонячного і космічного випромінювання шари розріджених газів . Рівні іонізації залежать від часу доби та року, географічної широти і процесів, що відбуваються на Сонці.

В іоносфері розрізняють три області (D, E, F), в кожній з яких відбуваються свої іонізаційні процеси. Наприклад, удень область F розщеплюється на дві – нижню F1 та верхню F2 , влітку іонізація всіх шарів іоносфери збільшується, а шару F2 – зменшується.

 

Таблиця 8.1

Номер діапазону Найменування хвиль Наймену­вання частот Діапазон хвиль Діапазон частот Основні галузі використання
Декамегаметрові 105...І04 км 3...3О Гц Не використовуються
Мегаметрові 104...103 км 30...300 Гц - " -
Гектокілометрові 103...102 км 0,3...3 кГц - " -
Міріаметрові Дуже низькі 102...10 км 3...30 кГц Радіонавігація, радіозв'язок, радіорозвідка корисних копалин, метеослужба
Кілометрові Низькі 104...103 м   30...300 кГц Радіозв'язок, радіомовлення, радіонавігація
Гектометрові Середні 103...102 м 0.3...3 МГп Те саме
Декаметрові Високі 102...10 м 3...30 МГц Радіозв'язок, радіомовлення, радіонавігація, магістральні космічні лінії радіозв'язку
Метрові Дуже високі 10...1 м 30...300 МГц Радіозв'язок, телебачення, радіоастрономія, космічний зв'язок
Дециметрові Ульїра- високі 101...10 см 0,3...3 ГГц Радіолокація, радіонавігація, телебачення, радіорелейний зв'язок, космічний зв'язок, радіоастрономія, радіомедицина,радіофізичні дослідження
Сантиметрові Надвисокі 10..1см 3...30 ГГц Радіолокація, радіоастрономія, радіомедицина, радіорелейний і космічний зв'язки
Міліметрові Вкрай високі 10...1 мм 30...300 ГГц Радіолокація, радіоастрономія, радіоспектроскопія, космічний зв'язок
Дециміліметрові Гіпервисокі 1..0,1 мм 0,3...3 ТГц Радіоспектроскопія, дослідні роботи
Світлові Менш як 0,1 мм Понад 3 ТГц Радіозв'язок, телебачення, голографія, космічний зв'язок за межами Землі

 

Рис. 8.2. Поширення радіохвиль різної довжини у просторі

 

Крім відносно стабільних шарів іонізації, в іоносфері спостерігається ще спорадична іонізація, що виникає випадково в окремих її ділянках, наприклад унаслідок метеорних явищ.

Поширення радіохвиль у просторі супроводжується такими явищами: як відбиття, розсіяння, поглинання, заломлення, дифракція, інтерференція.

Поширення радіохвиль може відбуватися двома шляхами (рис. 8.2): поверхневим променем 1, який огинає поверхню Землі завдяки дифракції, і просторовим променем, який може одноразово (2) або багаторазово (3) відбиватися від іоносфери та поверхні землі. Яким із цих шляхів радіс хвилі досягають місця розташування приймальної антени, залежить від стану іоносфери, властивостей поверхні Землі, а також від носійної частоти радіосигналу.

При поширенні радіохвиль поверхневим променем вони взаємодіють з поверхнею Землі. Остання за електричними властивостями є напівпровідником, провідність якого залежить від частоти струму. Радіохвилі наводять у поверхні Землі індукційні струми, значення яких збільшується із зростанням частоти, тобто з підвищенням частоти зростає згасання і зменшується віддаль поширення радіохвиль. Коли ж довжина хвилі стає сумірною з розмірами окремих об'єктів на Землі, дифракція спадає і на поширення радіохвиль починає впливати їх відбиття від елементів поверх Землі та будівель. Характер взаємодії радіохвиль з поверхнею Землі ускладнюється через її неоднорідності (простори океанів, пустель, лісів

Просторовий промінь радіохвиль взаємодіє з іоносферою, внаслідок чого вільні електрони під дією електромагнітного поля починають коли ватися з його частотою й утворюють змінні струми. Електрони, що руха ються, зіштовхуються з нерухомими іонами і віддають їм частину енергії, яку вони одержали від радіохвиль. Чим менша частота коливань, тим більший за період шлях проходить електрон і тим більше за цей час зіткнень у нього відбудеться з іонами, що зумовлює збільшене поглинання енергії радіохвиль.

Фізично процес відбиття від іоносфери можна уявити так: наведені в іоносфері струми створюють власне електромагнітне поле, яке, додаючись до поля хвилі, що падає, спричинює її відбиття в напрямку.Землі.

Відбиття від іоносфери можна пояснити також з позиції заломлення радіопроменя під час проходження в шарах іоносфери, де поступово зменшується діелектрична проникність (збільшується концентрація електронів). Якщо заломлений радіопромінь встигне зайняти горизонтальне положення нижче шару з максимальною концентрацією вільних електронів, то, продовжуючи заломлюватись, він спрямовується в напрямку Землі (див. рис. 8.2, промінь 4). У протилежному разі радіопромінь виходить у космічний простір і на Землю не повертається.

Кілометрові хвилі помітно дифрагують, порівняно слабко поглинаються земною поверхнею і поширюються переважно поверхневим променем на віддалі до 3000 км. В іоносфері вони швидко згасають. Однак уночі, коли концентрація електронів у шарі F зменшується, кілометрові хвилі можуть відбиватися від іоносфери та поширюватися просторовим променем на віддалі понад 3000 км.

Гектометрові хвилі досить швидко згасають унаслідок поглинання земною поверхнею. Їхня дифракція проявляється слабко і тому гранична відстань зв'язку на цих хвилях не перевищує 1000 км. Уночі ж їхнє відбиття від шару Е іоносфери стає значним і просторовий промінь забезпечує стійкий радіозв'язок на відстані до 4000 км.

Однією з особливостей електромагнітного поля кіло- та гектометрових хвиль поверхневого променя є практично вертикальна його поляризація. Поздовжня електрична компонента хвилі, що поширюється над поверхнею Землі, дуже мала і її впливом можна знехтувати. Це враховується при проектуванні антен для названих діапазонів електромагнітних хвиль.

Декаметрові хвилі поширюються просторовим променем. Поверхневий промінь декаметрових хвиль унаслідок сильного поглинання поширюється лише на кілька десятків кілометрів. До того ж їхня дифракція вираже-на дуже слабко. Умови поширення декаметрових хвиль істотно залежать від частоти в межах діапазону та концентрації електронів у різних шарах іоносфери. З переходом до більш коротких хвиль заломлення їх в іоносфері зменшується. На декаметрових хвилях немає поляризаційних обме-жень, але горизонтальна поляризація має деякі переваги через те, що такі хвилі мають кращі умови відбиття від поверхні Землі під малими кутами, Концентрація електронів в Іоносфері залежить від сонячної активності. тому в межах діапазону декаметрових хвиль виділяють частоти для ден-них і нічних сеансів зв'язку. Наприклад, до денних відносять хвилі зав-довжки від 10 до 25 м, які добре відбиваються шаром F та слабко погли-ться шаром Е. Вночі ж, коли концентрація електронів в іоносфері зменшується, денні хвилі виходять у космічний простір. Нічні хвилі ле жать у діапазоні від 35 до 100 м. Хвилі завдовжки від 25 до 35 м викорис товують вранці й увечері.

Навіть мала потужність радіопередавальних пристроїв на коротких хвилях може забезпечувати зв'язок на відстань, що перевищує 5000 км. Однак для зв'язку на декаметрових хвилях характерними є зони мовчання і зони завмирання сигналів. Якщо, наприклад, поверхневий промінь 1 (див рис. 8.2) поширюється лише до точки А, а просторовий промінь 2 від тієї самої станції починає прийматися після точки В, то проміжок між А і В для цієї частоти буде зоною мовчання, тому що за будь-яких умов прийняти такий сигнал на цьому проміжку неможливо. Із зменшенням довжини хвилі зони мовчання розширюються, оскільки відстань приймання поверхневим променем скорочується, а просторовий промінь заломлюється іоносферою з орієнтацією на Землю при менших кутах падіння.

Завмирання сигналів в точці В зумовлюються інтерференцією кількох просторових променів від однієї станції, які прийшли в точку приймання різинми шляхами, тобто з різними фазами. Наприклад один промінь може бути поверхневим, а інший – просторовим або один промінь – після одноразового відбиття (промінь 2), а інший (промінь 3) – після багаторазового. Через те, що умови поширення променів змінюються довільно, сигнали в точці приймання можуть бути у фазі, у протифазі або в будь-якому довільному співвідношенні фаз. Це є причиною флуктуацій та завмирання сигналів. Для боротьби з цим явищем застосовують автоматичне регулювання підсилення (АРП) в радіоприймачах і приймання на кілька рознесених у просторі антен.

Метрові хвилі в межах Землі поширюються лише поверхневим променем 5 (див. рис. 8.2) на відстані прямої видимості. Ці хвилі не відбиваються іоносферою, не огинають Землю та перешкоди на своєму шляху, дуже сильно поглинаються поверхнею. Відстань зв'язку при цьому визначається тільки висотами приймальної та передавальної антен і може бути визначена за формулою

, (8.1)

де H1, Н2 –висоти антен над поверхнею Землі; R3 –їїрадіус.

Однак метровий діапазон є найбільш інформаційно містким з усіх розглянутих. Лише в цьому діапазоні можна забезпечити широкосмугову пере' дачу сигналів (наприклад, телевізійних) при великій кількості одночасно працюючих каналів. Тому для використання цього діапазону буду радіорелейні лінії зв'язку, ретрансляційні станції, в тому числі на штучну супутниках зв'язку. Властивість метрових хвиль поширюватись тільки прямолінійно застосовується в радіолокації та радіонавігації, проходження їх крізь іоносферні шари без відбиття і заломлення лежить в основі побудов зв'язку з космічними об'єктами, в тому числі з міжпланетними станціями.

Останнім часом для зв'язку широко використовуються досягнення оптоелектроніки, а також рентгенівські промені для передачі інформації.

 

– Конец работы –

Эта тема принадлежит разделу:

Основи радіоелектроніки

Затверджено Міністерством освіти i науки України... Підручник для студентів вищих педагогічних...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Використовуваних радіочастот

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СПИСОК СКОРОЧЕНЬ
    АЛП – арифметико-логічний пристрій АМ – амплітудна модуляція АРП – автоматичне регулювання АХ – амплітудна характеристика АЦП – а

ПЕРЕДМОВА
Політехнічна і практична спрямованість підготовки майбутніх учителів фізики значною мірою залежить від опанування ними необхідного обсягу знань та практичних умінь стосовно загальнотехнічних дисцип

Сигнали та їхні параметри.
  Сигнал — це будь-який фізичний носій інформації, кількісні характеристики змінюються з часом. Це фізичний процес, здатний діяти на органи чуття людини або технічні пристрої (

Сигнали повідомлення
Реальні сигнали повідомлення (наприклад, електричні сигнали мови, музики, зображення) є випадковими неперіодичними функціями часу. Для спрощення аналізу вважаємо їx складними періодичними детерміно

Дискретизація аналогових сигналів повідомлення
  Якщо аналогові сигнали, задані функцією , розглядати в кінцевому проміжку часу, то зовсім не обов'язково враховувати всю нес

Багатоканальна передача інформації
  Розглянуті аналогові і цифрові сигнали повідомлення можуть бути використані для передачі по лінії зв'язку одночасно тільки одного повідомлення. Такий зв'язок називається однокана

Деталі й елементи радіоелектронних кіл
Будь-який складний радіоелектронний пристрій складається з обмеженого набору відносно простих деталей, які при з'єднанні утворюють електричні кола. Електричне коло — це сукупність з'єднаних

Схеми радіоелектронних пристроїв
  Для побудови, аналізу й унаочнення радіоелектронних пристроїв користуються різноманітними схемами, найпоширенішими з яких є структурні, функціональні, принципові (повні), монтажні (

Аналіз властивостей радіоелектронних кіл
  Існує кілька способів аналізу властивостей радіоелектронних кіл: аналітичні, графічні, графоаналітичні. Залежно від схеми, режиму її роботи, виду сигналу, цілей аналізу вибир

Чотириполюсника
Розглянемо навантажений чотириполюсник (див. рис. 2.6, б), в якому значення струму на виході замінимо за законом Ома . Тоді система рівнянь

Вимірювання основних параметрів чотириполюсників
  Усі розглянуті вище характеристики та параметри чотириполюсника можна одержати експериментально прямим вимірюванням й обчисленням. Для визначення малосигнальних параметрів

Вимірювання основних параметрів чотириполюсників
  Усі розглянуті вище характеристики та параметри чотириполюсника можна одержати експериментально прямим вимірюванням й обчисленням. Для визначення малосигнальних параметрів

Вимірювання основних параметрів чотириполюсників
  Усі розглянуті вище характеристики та параметри чотириполюсника можна одержати експериментально прямим вимірюванням й обчисленням. Для визначення малосигнальних параметрів

Діелектричних матеріалів
  Найпоширенішими радіодеталями як у дискретному, так і в інтегральному виконанні є резистори та конденсатори, які виготовляють з різно­манітних провідникових матеріалів з використанн

Резистори
  За зонною теорією провідності до напівпровідників належать речовини, в яких ширина забороненої зони не перевищує 3 еВ, або такі, питома електропровідність яких лежить у межах від 10

Електронно-дірковий перехід і його властивості. Напівпровідникові діоди
  Розглянуті вище властивості однорідних напівпровідників використовуються лише для побудови напівпровідникових резисторів. Більшість же напівпровідникових приладів й елементів мікрое

Транзистори
Транзистором називають напівпровідниковий прилад, що має три виводи (електроди) і здатний підсилювати потужність сигналу. Назва приладу походить як словосполучення від двох англі

Електровакуумні прилади
  Найпростіший електровакуумний прилад — діод (рис. 3.22, а) має вигляд балона, тиск повітря в якому не перевищує 10–7…10–8 мм. рт. ст., де знаходя

Чотириполюсники
  Розглянуті в п. 3.5 та 3.6 активні елементи радіоелектронних кіл мають різну фізичну природу, будову і принцип дії, але в радіоелектронних пристроях вони виконують одну й ту саму фу

Транзисторів та електронних ламп
  Режим роботи транзисторів й електронних ламп забезпечується початковим положенням РТ на їхніх ВАХ, яке визначається значеннями постійних напруг на електродах за відсутності сигналу.

Напівпровідникові інтегральні мікросхеми
  Розглянуті радіодеталі – резистори, конденсатори, діоди, транзистори, електровакуумні прилади тощо – складають дискретну елементну 6азу радіоелектроніки. Кожна з цих деталей виготов

Мікроелектроніку
Підвищення рівня інтеграції мікросхем І пов'язане з ним зменшення розмірів елементів мають свої межі. Наприклад, Інтеграція більш як 10е елементів в 1 см3 кристала стає вже ек

Електронно-променеві прилади
Електронно-променевими називають електровакуумні прилади, в яких для перетворення сигналів інформації використовують потік електронів у вигляді гостро сфокусованого променя або пучка пром

Типи електричних фільтрів
  Однією з поширених операцій, що виконуються в радіоелектронних колах, є виділення певного сигналу або частини його спектра з сукуп­ності інших сигналів та завад. Для цього використо

Властивості найпростіших RС-елементів
Для виділення сигналів у найпростіших RС-фільтрах використовується залежність реактивного опору конденсатора, а разом із ним і коефіцієнта передачі чотириполюсника, від частоти. Для поліпшен

Вибірні властивості коливального контуру
Резонансні фільтри, або -фільтри, складають з коливальних конту­рів, тобто з каскадно з’єднаних реактивних елементів різного виду. В них заб

Загальна структура і типи підсилювачів
Підсилення — це найпростіший і базовий вид будь-яких перетворень електричних сигналів. Навіть у тих випадках, коли для виконання основної функції (наприклад, перетворення спектрів сигналів) досить

Каскаду
Для підсилення широкосмугових сигналів найчастіше застосовуються аперіодичні підсилювачі. Вони ж є основою для створення підсилювальних мікросхем і вибірних підсилювачів, побудованих на

Каскаду
Для підсилення широкосмугових сигналів найчастіше застосовуються аперіодичні підсилювачі. Вони ж є основою для створення підсилювальних мікросхем і вибірних підсилювачів, побудованих на

Резонансні підсилювачі
Ці підсилювачі найчастіше використовуються для виділення та підсилення радіочастотних сигналів. Це — суто вузькосмугові вибірні підсилювачі, основними параметрами яких є максимальний коефіцієнт під

Підсилювачі потужності
  Ці підсилювачі призначені для забезпечення потрібної потужності сигналу на опорі навантаження при мінімальному значенні коефіцієнта нелінійних спотворень і максимальному ККД. Підсил

Підсилювачі постійного струму й операційні підсилювачі
  Якщо миттєві значення сигналу змінюються дуже повільно, то нижня гранична частота смуги пропускання підсилювача має прямувати до нуля. З цією метою каскади підсилювачів з'єднують мі

Загальна структура і типи перетворювачів сигналів
  Перетворення електричних сигналів поряд з їх виділенням та підсиленням є однією з основних функцій радіоелектроніки. Існує два виду перетворення сигналів: логічне перетворенн

Модуляція і схеми модуляторів
Модуляція — це процес, завдяки якому з використанням допоміжного коливання спектр керувального сигналу переноситься до ділянки вищих частот із метою здійснення багатоканальної передачі інфор

Демодуляція і схеми детекторів
  За визначенням демодуляція (детектування) сигналу — це процес, зворотний його модуляції. Згідно з п. 6.1 детектування може відбуватися як у параметричних (синхронне детектува

Перетворення і множення частоти
Перетворення частоти — це лінійне перенесення спектра радіосигналу з однієї області частот в іншу, як правило, більш низькочастотну. При цьому форма обвідної модульованого сигналу та його

Логічні перетворення цифрових сигналів і базові логічні елементи
  Логічні перетворювачі електричних сигналів є основою побудови всіх цифрових схем і пристроїв. За формальними ознаками вони підпадають під узагальнену структурну схему (див. рис. 6.1

Загальна структура і типи генераторів
  Генератори електричних коливань перетворюють енергію джерела живлення на енергію змінного струму, частота якого визначається параметрами коливальної системи. Існують різні способи г

Автогенератори з коливальним контуром
  Автогенератор із коливальним контуром — це резонансний підсилювач з колом 33, побудований за трансформаторною, автотрансформаторною або ємнісною схемами. Підсилювач може бути

Підсилювачах
  Застосування автогенераторів з коливальним контуром має обмеження як при надвисоких частотах, так і при низьких. із зростанням частоти розміри коливальної системи зменшуються настіл

Генератори релаксаційних коливань
Генераторами релаксаційних коливань називають такі джерела періодичних імпульсних сигналів, в основі роботи яких лежить періодичне накопичення енергії від джерела постійного струму в ємно

Тригери
Тригером називають пристрій, що має два стійких стани рівноваги і здатний стрибком переходити з одного стану стійкої рівноваги в інший під дією зовнішнього (керувального) сигналу запуску.

Радіопередавачів
Структурні схеми радіопередавачів, їхні конструкції та принципові схеми значною мірою визначаються основними технічними показниками: призначенням і місцем експлуатації; потужністю сигналу в антені

Радіоприймачів
  Усі радіоприймачі можна поділити на дві великі групи: побутові та професійні. Перші призначені для приймання програм радіомовлення і телебачення. Ними користується нас

Особливості побудови деяких елементів радіоприймачів
  Ці особливості пов'язані з широкодіапазонністю радіоприймачів як за частотою, так i за динамічністю сигналів на вході. Висока якість приймання потребує в цих умовах зберіганн

Принципи телебачення
  Сукупністъ оптичних, електронних i радіотехнічних пристроїв, за допомогою яких зображення перетворюєься на електричні сигнали, після чого вони передаються на відстань, синтезуються

Структурні схеми монохромних телевізорів
  За принципом дії телевізійні приймачі можуть бути прямого підсилення i супергетеродинні. Вони можуть бути побудовані за дво- або одноканальною схемою. Із збільшенням кількості телев

Принципи радіолокації
Радіолокація — це галузь радіоелектроніки, за допомогою якої при використанні електромагнітного випромінювання виявляють, визначають місцеположення у просторі, напрямок i швидкістъ руху (

Радіолокація неперервним сигналом
  Найперші РЛС були саме доплерівськими станціями неперервного випромінювання. Спрощену структурну схему такої станції показано на рис. 10.2. Станція складається з генератора високоча

Радіолокація імпульсним сигналом
  На рис. 10.4 зображено спрощену структурну схему імпульсної РЛС. Її роботою керує генератор синхроімпульсів ГСІ. Від його дуже коротких імпульсів у вcix блоках РЛС починається відлі

Конструктивні особливості окремих елементів РЛС
  Виявлення та визначення координат i параметрів руху об'єктів у просторі за допомогою електромагнітних хвиль — досить складна суперечлива технічна проблема, однією з основних умов ус

Оброблення цифрової інформації
Електронні обчислювальні машини (комп'ютери) — це засоби перетворення інформації, які є програмованими автоматами. Існують машини для оброблення інформації в аналоговій формі та

Апаратні засоби ЕОМ
  Будь-яка ЕОМ складається з електронних операційних пристроїв, що виконують операції, задані програмою, і генерують, транспортують та перетворюють електричні імпульси, якими позначен

Комп’ютерні мережі
З'єднання кількох комп’ютерів у систему значно розширює можливості користувачів. Для організації комп’ютерної мережі в кожному комп’ютері встановлюється спеціальна плата — мережний адаптер. У мереж

Основні типи комп’ютерів
  Практично всі типи ЕОМ побудовано за принципами і схемою, розглянутими вище. Проте залежно від конкретних сфер застосування вони різняться кількісними характеристиками, структурою а

Основні операційні елементи обчислювальної техніки
  Як зазначено при розгляді апаратних засобів обчислювальних систем, оброблення цифрової інформації полягає у виконанні елементарних операцій з електричними імпульсами, що відтворюють

Питания радіоелектроніки в курсі фізики i спецкурсах
  Вивченню питань радіоелектроніки в структурі базового курсу фізики приділяється значна увага. В шести великих розділах завершального ступеня навчання i майже десяти лабораторних роб

Радіоелектроніка у кабінеті фізики i засобах навчання
  Кабінет фізики сучасної загальноосвітньої школи досить насичений радіоелектронною апаратурою та обладнанням. Його можна поділити на такі основні групи: навчальні моделі для вивчення

Радіоелектроніка в позакласній роботі
  Через те, що радіоелектроніка оточує нас у повсякденному житті, завдяки багатьом своїм загадковим явищам та ефектам i різноманітності застосування вона викликае жвавий інтерес навит

Елементи радіоелектроніки в технічній творчості школярів
  Однією з найбільш гнучких та ефективних форм опанування теоретичних знань радіоелектроніки i набуття практичних навичок школярами є фізико-технічний гурток або факультатив, що пєедн

ТА РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ
1.Алгинин Б. Е. Кружок электронной автоматики.— М.: Просвещение, 1990. —192 с. 2.Бобровников Л. 3. Радиотехника и электроника. — М.: Недра,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги