рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Уравнение касательной

Уравнение касательной - раздел Образование, Величины постоянные и переменные Пусть Функция Задается Уравнением Y=F(X), Нужно Написать...

Пусть функция задается уравнением y=f(x), нужно написать уравнение касательнойв точке x0. Из определения производной:

y/(x)=limΔx→0ΔxΔy

 

Δy=f(xx)−f(x).


Уравнение касательнойк графику функции: y=kx+b (k,b=const). Из геометрического смысла производной: f/(x0)=tgα=k

Т.к. x0 и f(x0)∈ прямой, то уравнение касательнойзаписывается в виде: yf(x0)=f/(x0)(xx0) , или

y=f/(x0)·x+f(x0)−f/(x0)·x0.

 

 


Уравнение нормали

Нормаль-- это перпендикуляр к касательной(см. рисунок). Исходя из этого:

tgβ=tg(2π−α)=ctgα=1tgα=1f/(x0)


Т.к. угол наклона нормали -- это угол β1, то имеем:

tgβ1=tg(π−β)=−tgβ=−1f/(x).


Точка (x0,f(x0))∈ нормали, уравнение примет вид:

yf(x0)=−1f/(x0)(xx0).

 

40. Докажите теорему о непрерывности дифференцируемой функции.

Теорема. Если функция дифференцируема в некоторой точке a, то она непрерывна в этой точке.

Доказательство. По определению производной

Это предельное равенство означает, что выражение под знаком предела можно представить в виде

где α(x) – бесконечно малая функция при xa. Тогда

Следовательно, при xa.

Заметим, что дифференцируемость функции в некоторой точке означает ее гладкость в окрестности этой точки, что влечет за собой непрерывность функции в рассматриваемой точке. Однако обратное утверждение несправедливо – функция, обладающая свойством непрерывности в некоторой точке, не обязательно дифференцируема в этой точке.


Рис. 8. Непрерывная в точке a функция не является дифференцируемой в этой точке.

 

41. Перечислите правила дифференцирования.

При дифференцировании константу можно выносить за производную:

Правило дифференцирования суммы функций:

Правило дифференцирования разности функций:

Правило дифференцирования произведения функций (правило Лейбница):

Правило дифференцирования частного функций:

Правило дифференцирования функции в степени другой функции:

Правило дифференцирования сложной функции:

Правило логарифма при дифференцировании функции:

42. Найти производные указанных функций ;

; .

43.Дайтевывод формулы производной сложной функции.

Производная сложной функции
 
"Двухслойная" сложная функция записывается в виде где u = g(x) - внутренняя функция, являющаяся, в свою очередь, аргументом для внешней функции f. Если f и g - дифференцируемые функции, то сложная функция также дифференцируема по x и ее производная равна Данная формула показывает, что производная сложной функции равна произведению производной внешней функции на производную от внутренней функции. Важно, однако, что производная внутренней функции вычисляется в точке x, а производная внешней функции - в точке u = g(x)! Эта формула легко обобщается на случай, когда сложная функция состоит из нескольких "слоев", вложенных иерархически друг в друга.

44.Выведите формулу производной обратной функции.

Пусть -- непрерывная функция, монотонная на интервале . Тогда, как мы доказали в гл. 3, функция имеет обратную функцию , которая также является непрерывной и монотонной функцией на интервале , в который функция переводит интервал . Пусть -- фиксированная точка и -- точка, ей соответствующая. Тогда .

Теорема 4.5 Пусть функция имеет в точке производную . Тогда обратная функция имеет в соответствующей точке производную , которую можно отыскать по формуле

(4.14)


Доказательство. Дадим аргументу приращение , такое что , и рассмотрим соответствующее приращение , определяемое равенством . Тогда, очевидно, ; при этом , а из монотонности функции следует, что . Поскольку как функция , так и функция непрерывны, то условия и эквивалентны. Составим теперь разностное отношение для функции и запишем для него очевидное равенство:

Теперь перейдём в этом равенстве к пределу при и учтём, что при этом тоже стремится к 0:

что мы и хотели доказать.

 

Заметим, что, очевидно, из формулы (4.14) следует, что

(4.15)


если -- функция, обратная к .

45.Приведите пример функции, заданной неявно. Объясните, как найти ее производную.

– Конец работы –

Эта тема принадлежит разделу:

Величины постоянные и переменные

Функция может быть определена разными формулами на разных участках области своего задания... Аналитический способ является самым распространенным способом задания функций... Словесный способ Этот способ состоит в том что функциональная зависимость выражается словами...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Уравнение касательной

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Величины постоянные и переменные
  При изучении закономерностей, встречающихся в природе, все время приходится иметь дело с величинами постоянными и величинами переменными Определение. Пос

Теорема
(Принцип двустороннего ограничения, теорема о двух милиционерах, теорема сжатия, правило сэндвича, теорема о трех струнах). Если и

Определение
Предположим, что функциональная зависимость от не задана непосредственно

Остаточный член
Остаточный член R может быть легко выражен в терминах : и

Замечание
Формулу для дифференциала функции можно записать в виде: Отсюда получаем, что

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги