рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ИСТОРИЯ РАЗВИТИЯ ГЕНЕТИКИ ЧЕЛОВЕКА. ЗНАЧЕНИЕ ГЕНЕТИКИ ДЛЯ МЕДИЦИНЫ

ИСТОРИЯ РАЗВИТИЯ ГЕНЕТИКИ ЧЕЛОВЕКА. ЗНАЧЕНИЕ ГЕНЕТИКИ ДЛЯ МЕДИЦИНЫ - раздел История, История развития генетики. Значение генетики для медицины Генетика Наряду С Морфологией, Физиологией И Биохимией Является Теоретической...

Генетика наряду с морфологией, физиологией и биохимией является теоретической базой медицины, дает ключ к пониманию молекулярно-генетических процессов, приводящих к развитию заболеваний.

Представления о передаваемых по наследству различиях между людьми существовали уже в античные времена (см. гл. 1). Уже в трудах древнегреческих философов ставится проблема врождённого и приобретённого (Гиппократ, Анаксагор, Аристотель, Платон). Некоторые из них даже предлагали «евгенические» меры. Так, Платон в своём труде «Политика» подробно объясняет как следует подбирать супругов, чтобы рождались дети, которые в будущем станут выдающимися личностями и в физическом, и в нравственном отношениях.

В 1752 г. Мопертюи опубликовал сообщение о семье, где в четырёх поколениях наблюдалась полидактилия. Автор пришёл к выводу, что этот порок наследуется и передаётся как от отца, так и от матери.

Английский врач Адамс (1756-1818) в своём труде «Трактат о предполагаемых наследственных свойствах болезней» сделал ряд замечательных выводов. Вот некоторые из них.

1. Существуют семейные и наследуемые факторы.

2. При семейных заболеваниях родители чаще состоят в родстве.

3. Наследственные заболевания могут проявляться в разном возрасте.

4. Существует предрасположенность к заболеваниям, которая приводит к заболеванию при воздействии внешних факторов.

5. Репродуктивная способность у многих больных с наследственными заболеваниями снижена.

Адамс критически относился к негативным евгеническим программам.

В 1820 г. немецкий профессор медицины Нассе правильно определил наиболее важные закономерности наследования гемофилии.

В работах большинства исследователей XIX века истинные факторы и ошибочные представления были перемешаны, а критериев для установления истины в то время еще не существовало. Генетика человека не имела основных теоретических положений. Как наука она сформировалась в 1865 г., когда появились биометрия и менделизм.

Большое влияние на развитие генетики человека оказали работы Ф. Гальтона. В 1865 г. он опубликовал статью «Наследование таланта и характера», в которой он писал: «…у нас есть все основания считать, что способности или особенности характера зависят от множества неизвестных причин». На основании своих исследований Гальтон сделал вывод о том, что большие способности и достижение известности сильно зависят от наследственности. Начиная с работ Гальтона, исследования в области генетики человека приобрели сильную евгеническую направленность. Позднее, в период нацизма в Германии (1933-1945), стало ясно, к каким ужасным последствиям может привести искажённое толкование утопической идеи об улучшении человеческого рода.

Вклад в генетику человека внесли работы английского врача А.Е.Гэррода по исследованию врожденных нарушений метаболизма при алкаптонурии, альбинизме и цистинурии. В 1908 г. Гэррод опубликовал свой классический труд, посвященный этой теме. В нем он назвал эти заболевания как «врожденные ошибки метаболизма», которые наследуются рецессивно и проявляются чаще в семьях, где родители близкие родственники. Он высказал также предположение, что различная реакция на лекарства и инфекционные агенты может быть обусловлена индивидуальными химическими различиями. Он писал: «…как среди представителей данного вида нет двух особей с идентичным строением тела, так не могут быть идентичными и химические процессы в их организмах». Гэррода по праву считают основателем биохимической генетики человека.

Как уже говорилось ранее, к концу XIX века были обнаружены хромосомы и изучены митоз и мейоз. На первых порах излюбленными объектами генетиков были растения и насекомые. Цитогенетика человека начала бурно развиваться с 1956 г., когда было установлено, что в клетках человека содержится 46 хромосом. Обнаружение трисомии по 21 хромосоме при синдроме Дауна и аномалии половых хромосом при нарушениях полового развития определило важность цитогенетики в медицине.

Открытие групп крови системы АВО К. Ландштейном в 1900 г. (Нобелевская премия 1930г.) и законов их наследования Дунгерном и Гиршфельдом в 1911 г. стало доказательством применимости законов Менделя к наследованию признаков у человека. В 1924 г. Бернштейн установил, что группы крови у человека контролируются серией множественных аллелей. Спустя 25-30 лет Винером, Левиным и Ландштейном был обнаружен резус-фактор (Rh) и показано, что гемолитическая желтуха новорожденных возникает вследствие иммунологической несовместимости матери и плода.

С периода своего зарождения генетика человека развивалась не только как теоретическая, но и как клиническая дисциплина. С одной стороны, изучение общих закономерностей наследования признаков в ряду поколений, развитие хромосомной теории наследственности стимулировало сбор родословных и их генетический анализ; с другой стороны, изучение патологических вариантов признаков (предмет врачебной профессии) служило основой для познания наследственности человека. На основе использования законов классической генетики формировалось понимание общих закономерностей наследственной патологии, причин клинического полиморфизма, признание роли внешней среды в развитии болезней с наследственной предрасположенностью.

Основателем медицинской генетики в России по праву считается С.Н.Давиденков, одновременно и генетик, и невропатолог. Он первым поставил вопрос о создании каталога генов (1925 г.) и организовал первую в мире медико-генетическую консультацию (1929г.). По генетике наследственных болезней нервной системы опубликовал несколько книг: «Наследственные болезни нервной системы» (1932г.), «Проблемы полиморфизма наследственных болезней нервной системы» (1934г.), «Эволюционно-генетические проблемы в невропатологии» (1947 г.).

Наиболее яркий этап взаимодействия генетики человека и медицины начинается с конца 50-х гг., после открытия в 1959 г. хромосомной природы наследственных болезней и введения в медицинскую практику цитогенетического метода исследований. На основе взаимодействия трех ветвей генетики человека – цитогенетики, менделевской и биохимической генетики – формируются современная медицинская и клиническая генетика, основными задачами которых являются:

1. изучение наследственных механизмов поддержания гомеостаза организма, обеспечивающих здоровье индивида;

2. изучение значения наследственных факторов в этиологии болезней;

3. изучение роли наследственных факторов в определении клинической картины болезней;

4. диагностика, лечение и профилактика наследственных болезней и т.д.

Непосредственная связь и взаимовлияние генетики человека и медицины стали в последние 40 лет определяющими факторами активного изучения наследственности человека и реализации их достижений в практике.

Значение генетики для медицины огромно. В человеческих популяциях насчитывается свыше 4000 форм наследственных болезней. Около 5% детей рождаются с наследственными или врожденными болезнями. Вклад наследственных и врожденных болезней в младенческую и детскую смертность в развитых странах (по материалам ВОЗ) составляет 30%. Прогресс в развитии медицины и общества (улучшение медицинского обслуживания, повышение уровня жизни) приводит к относительному возрастанию доли генетически обусловленной патологии в заболеваемости, смертности и инвалидизации. В то же время, человек сталкивается с новыми факторами среды, ранее не встречавшимися на протяжении всей его эволюции, испытывает большие нагрузки социального и экологического характера (избыток информации, стрессы, загрязнения атмосферы, в том числе мутагенными и канцерогенными факторами химической и физической природы). Новая среда может привести к повышению уровня мутационного процесса и, как следствие этого, появлению новой наследственной патологии.

Доказан и существенный вклад генетических факторов в развитие онкозаболеваний, а также таких широко распространенных мультифакториальных болезней, как сердечно-сосудистые, язвенные болезни желудка и двенадцатиперстной кишки, сахарный диабет, психические заболевания и т.д. Для лечения и профилактики наследственных и, в частности, мультифакториальных болезней, встречающихся в практике врачей всех специальностей, необходимо знать механизмы взаимодействия средовых и наследственных факторов в их возникновении и развитии, интегрально понимать все стадии индивидуального развития под углом реализации наследственной информации.

Таким образом, генетическое образование врача – одно из необходимых условий для диагностики, лечения и профилактики наследственных болезней

Генетика предоставляет клинической медицине:

1. Методы ранней диагностики наследственных болезней;

2. Методы пренатальной (дородовой) диагностики наследственных болезней; интенсивно развиваются и методы преимплантационной (до имплантации зародыша) диагностики наследственных болезней;

3. Просеивающие программы диагностики наследственных болезней обмена веществ у новорожденных, что позволяет вовремя вмешаться в течение болезни и предотвратить аномальное развитие или гибель новорожденных;

4. Молекулярно-генетические и цитогенетические методы дифференциальной диагностики онкозаболеваний ;

5. Методы диагностики наследственной предрасположенности к развитию болезней;

6. Комплексную систему профилактики наследственных болезней, внедрение которой обеспечило снижение частоты рождения детей с наследственной патологией на 60%. Ведущую роль в профилактике наследственных болезней играет медико-генетическое консультирование – специализированный вид медицинской помощи, заключающийся в определении прогноза рождения ребенка с патологией на основе уточненного диагноза, в объяснении вероятности этого события консультирующимся и помощи семье в принятии решения о деторождении.

Успехи молекулярной генетики в области первичных продуктов мутантных генов и в понимании патогенеза наследственных болезней позволили улучшить методы лечения многих заболеваний (фенилкетонурия, галактоземия, гипотиреоз, гемофилия и т.д.).

Важнейшей частью генетики человека сегодня являются экогенетика и фармакогенетика, изучающие значение генетических факторов в индивидуальных реакциях организма на факторы окружающей среды (химические, биологические и физические) и на лекарственные препараты, соответственно. В последнее время многочисленные исследования роли генетических факторов, влияющих на токсичность фармацевтических препаратов, в сочетании со стремительным ростом объема информации о структуре и функциях генома человека привели к возникновению качественно нового направления – фармакогеномики. Задача фармакогеномики – проанализировать на уровне целого генома биохимические и генетические механизмы, лежащие в основе индивидуальных различий реакции на лекарственные препараты, и разработать на этой основе индивидуальную терапию, т.е. терапию, адаптированную к индивидуальному пациенту.

Итогом развития генной инженерии конца ХХ века явилось создание целого ряда генетических технологий, позволяющих решать задачи генетико-гигиенического нормирования факторов окружающей среды (предупреждение их мутагенных, тератогенных и канцерогенных эффектов), производства лекарственных препаратов, создания новых вакцин и сывороток для лечения целого ряда заболеваний.

Методами генной инженерии получены клоны клеток кишечной палочки, способные продуцировать соматотропин, инсулин, интерферон, интерлейкины, брадикинин и другие лекарственные препараты в промышленных масштабах.

Разработаны методы внесения генов патогенных вирусов в бактериальные клетки и приготовления из синтезируемых ими белков противовирусных сывороток. Таким образом, например, получена сыворотка против одной из форм гепатита.

К числу важных практических достижений генной инженерии следует также отнести создание диагностических препаратов. На сегодняшний день в медицинскую практику введено более 200 новых диагностикумов. Они используются для ранней генодиагностики злокачественных новообразований разной локализации, инфекционных заболеваний (урогенитальных и внутриутробных инфекций, вирусных заболеваний кожи, гепатитов).

Одним из главных итогов изучения генома человека является появление и быстрое развитие качественно нового этапа медицины – молекулярной медицины. Идентификация тысяч генов человека, выяснение генной природы и молекулярных механизмов многих наследственных и мультифакториальных заболеваний, роли генетических факторов в этиологии и патогенезе различных патологических состояний составляют научную основу молекулярной медицины. Они же определяют и ее две характерные особенности:

1. Индивидуальный подход к больному (профилактика, лечение и диагностика любого заболевания основываются на генетических особенностях каждого индивидуума);

2. Предиктивный (предупредительный) характер - профилактику и лечение можно начинать заранее, до появления реальной картины патологического процесса.

Практические достижения молекулярной медицины основаны, прежде всего, на широком внедрении молекулярных методов для решения медицинских задач:

1. Разработаны универсальные методы диагностики наследственных болезней на любой стадии онтогенеза;

2. Разработаны молекулярные подходы для точной идентификации личности (геномная дактилоскопия), для генотипирования органов и тканей, предназначенных для трансплантации;

3. Заложены экспериментальные и клинические основы генотерапии наследственных и онкозаболеваний.

Генная терапия является принципиально новым направлением в лечении болезней. С теоретической точки зрения ее преимущества перед другими методами лечения очевидны. С их помощью можно осуществлять коррекцию генетических дефектов соматических клеток организма. Клетками человека, которые можно использовать для переноса генов, являются клетки костного мозга и фибробласты. Их можно извлечь из организма, вырастить в культуре, с помощью вектора перенести в них нужный ген и снова ввести пациенту.

Первая успешная попытка применить генотерапию в клинической практике была предпринята в США в 1990 г. Ребенку, страдающему тяжелым комбинированным иммунодефицитом, связанным с дефектом гена, кодирующего аденозиндезаминазу, была введена неповрежденная копия гена. Извлеченные у больной клетки (Т-лимфоциты) крови культивировали в пробирке, при помощи ретровирусного вектора вводили в них неповрежденный ген аденозиндезаминазы и возвращали клетки больной. После нескольких курсов генной терапии состояние девочки настолько улучшилось, что она могла вести нормальный образ жизни и не бояться случайных инфекций.

В настоящее время ведется кропотливая работа по созданию векторов, выбору болезней и клеток-мишеней, способам введения генов. Исследования продолжаются широким фронтом, особенно в области лечения злокачественных заболеваний (более 60% всех проводимых клинических испытаний). Большинство клинических протоколов относится к 1-й и 2-й фазам исследования – созданию векторов, проверке безопасности генных конструкций и эффективности переноса генов. В настоящее время уже одобрено более 400 протоколов клинических испытаний различных генных конструкций с целью лечения многих наследственных, мультифакториальных и даже инфекционных заболеваний (СПИД). К сожалению, смерть одного из пациентов с наследственным дефицитом фермента пароксаназы после введения аденовирусной конструкции в 1999 году, несколько затормозила прогресс генной терапии. Этот случай продемонстрировал потенциальную опасность этого направления, в особенности при использовании вирусных векторов. В целом результаты первых 10 лет клинических испытаний генной терапии позволяют сделать заключение о том, что этот способ лечения оказался очень дорогостоящим и технически более сложным, чем ожидалось. Главной причиной, с точки зрения науки, тормозяшей внедрение генотерапии в клинику, является недостаточная для проявления терапевтического действия эффективность переноса генных конструкций в клетки пациента in vivo. Сегодня эволюция способов доставки ДНК развивается по пути дальнейших структурных модификаций вирусных и синтетических невирусных носителей (липосом и полимеров). Тем не менее, нет сомнений в том, что со временем генная терапия будет успешно применяться для лечения наследственных и злокачественных болезней и займет одно из ведущих мест в борьбе с наиболее страшными человеческими недугами.

Расшифровка первичной структуры генома человека уже позволила получить информацию, принципиально важную для всех разделов медицины. И, в свою очередь, дала начало новым направлениям медицинской науки, одним из которых является предиктивная (предсказательная) медицина.

Концептуальную основу предиктивной медицины составляют представления о генетическом полиморфизме. В молекулярном отношении генетический полиморфизм означает наличие на молекулярном уровне (в первичной структуре ДНК) небольших отклонений в нуклеотидных последовательностях, которые позволяют выживать особи, т.е. совместимы с нормальной функцией ее генома в онтогенезе, но приводят к определенным вариациям в структуре белков, и таким образом формируют биохимическую индивидуальность каждой личности. В отличие от мутаций, приводящих к патологическим изменениям и снижающим жизнеспособность, генетические полиморфизмы проявляются в фенотипе менее отчетливо, в большинстве случаев приводя к появлению белковых продуктов с несколько измененными свойствами и параметрами функциональной активности. В определенных условиях некоторые генетические полиморфизмы могут предрасполагать, либо препятствовать появлению различных заболеваний. Гены, аллельные варианты которых при наличии определенных условий предрасполагают к определенным заболеваниям, получили название «генов предрасположенности». Именно аллельные варианты этих генов и лежат в основе таких частых заболеваний, как атеросклероз, ишемическая болезнь сердца, диабет, бронхиальная астма, опухоли. Их сочетание для каждой конкретной патологии получило название «генных сетей». В каждой из таких сетей выделяют главные (центральные) гены, ответственные за начало болезни, и дополнительные (гены-модификаторы), эффект которых во многом определяется средовыми факторами.

Составление генной сети для каждого мультифакториального заболевания, идентификация в нем центральных генов и генов-модификаторов, анализ ассоциации их полиморфизма с конкретным заболеванием, разработка на этой основе комплекса профилактических мероприятий для конкретного пациента и составляет основу предиктивной медицины.

В настоящее время, как показывает анализ мировой литературы, уже доступны для клинического применения 150-200 генетических тестов для многих мультифакториальных болезней. Идентификация всех генов человека, открытие новых генных сетей неизмеримо увеличат возможности генетического тестирования наследственной предрасположенности и значение медико-генетического консультирования в своевременной коррекции потенциально возможной патологии.


– Конец работы –

Эта тема принадлежит разделу:

История развития генетики. Значение генетики для медицины

Кировская государственная медицинская академия... Кафедра медицинской биологии и генетики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ИСТОРИЯ РАЗВИТИЯ ГЕНЕТИКИ ЧЕЛОВЕКА. ЗНАЧЕНИЕ ГЕНЕТИКИ ДЛЯ МЕДИЦИНЫ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

История развития генетики. Значение генетики для медицины
  Киров - 2008 УДК 57+576.8+576.893.1/.6](075.8) ББК 28.0+28.6+28.083] я73 П83

ПРЕДМЕТ ГЕНЕТИКИ
  Генетика изучает два фундаментальных неразрывных свойства живых организмов: наследственность и изменчивость. Термин «генетика» был предложен У. Бэтсоном в 1906 году, который определ

Доменделевские представления о наследственности
Мыслители и ученые задумывались над вопросами о передаче наследственных свойств от родителей к детям и формировании организма в процессе индивидуального развития со времен глубокой древности. Но в

Изучение закономерностей наследственности на организменном уровне
Первый период ознаменовался открытием Г. Менделем в 1865 г. дискретности наследственных факторов и разработкой гибридологического метода изучения наследственности, т.е. правил скрещивания организмо

Изучение закономерностей наследственности и изменчивости на клеточном уровне
В конце Х1Х века были обнаружены хромосомы и исследованы митоз и мейоз. Флемминг (1980-1982) обнаружил расхождение сестринских хроматид при митозе, Ван Бенеден (1883) наблюдал равномерное регулярно

Молекулярный этап развития генетики
К началу 40-х гг. генетики уже хорошо знали процессы, связанные с взаимодействием микроскопических и макроскопических структур: поведение хромосом в митозе и мейозе, законы передачи наследственных

Достижения генетики в 20-40 гг. ХХ века
13 сентября 1913 года ректор Санкт-Петербургского университета проф. Э.Д.Гримм официально объявил студентам, профессорам и преподавателям естественного отделения, что 18 сентября приват-доцент Ю.А.

Репрессии и погромы генетики
  Начиная с середины 30-х годов поступательное развитие советской генетики оказалось нарушенным. Н.И.Вавилов, Н.К.Кольцов, А.С.Серебровский, С.С.Четвериков и их сподвижники оказались

В.С.Немчинов
Часть из них не выдержала, и к концу сессии они сломались, отступились от генетики после заявления Лысенко о полной поддержке и одобрении Сталиным его доклада о разгроме генетики. Все они потеряли

Возрождение отечественной генетики
В марте 1953 года пошатнулись позиции Т.Д. Лысенко. В это время были получены результаты, подтвердившие, что не белок, а нуклеиновые кислоты несут в себе запись генетической информации. Потрясающие

Установите соответствия
1.АВТОРЫ: 1.Н.Вавилов 2.Г.Мендель 3.Т.Морган ЗАКОНЫ ГЕНЕТИКИ: А) закономерности сцепленного наследования признаков Б) закон независимого наслед

Дополните
1. Предметом генетики является изучение закономерностей ………….. и ………………. 2. Основателем медицинской генетики в России является ……………….. 3. Современная генетика предоставляет медиц

ПРАВИЛЬНЫЕ ОТВЕТЫ НА ТЕСТОВЫЕ ЗАДАНИЯ
Выберите правильный ответ (ответы):   Основоположником генетики является: Г.Мендель   Генетика оформилась в самостоятельную н

Дополните
1. Предметом генетики является изучение закономерностей наследственности и изменчивости 2. Основателем медицинской генетики в России является Давиденков 3. Со

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги