Реферат Курсовая Конспект
Морфологический анализ цветных (спектрозональных) изображений - раздел Математика, Хорошо Известно, Что Изображения Одной И Той Же Сцены, Полученные При Различ...
|
Хорошо известно, что изображения одной и той же сцены, полученные при различных условиях освещения и(или) измененных оптических свойствах объектов могут отличаться радикально. Это обстоятельство порождает значительные трудности в прикладных задачах анализа и интерпретации изображений реальных сцен, в которых решение должно не зависеть от условий регистрации изображений.Речь идет, например, о задачах выделения неизвестного объекта на фоне известной местности, известного объекта на произвольном фоне при неконтролируемых условиях освещения, о задаче совмещения изображенний одной и той же сцены, полученных в различных спектральных диапазонах и т.д. Методы морфологического анализа, разработанные более десяти лет тому назад, [1-5], для решения перечисленных задач, были в основном ориентированы для применения к черно-белым изображениям и оказались достаточно эффективными, [5-11]. Между тем, по меньшей мере два обстоятельства указывают на целесообразность разработки морфологических методов анализа цветных изображений.
Во-первых, в задаче обнаружения и выделения объекта последний, как правило, прежде всего цветом отличается от фона. Во-вторых, описание формы изображения в терминах цвета позволит практически устранить эффект теней и влияние неопределенности в пространственном распределении интенсивности спектрально однородного освещения. 2. Цвет и яркость спектозонального изображения. Рассмотрим некоторые аспекты теории цвета так называемых многоспектральных (спектрозональных, [13]) изображений, аналогичной классической колориметрии [12]. Будем считать заданными n детекторов излучения со спектральными чувствительностями j =1,2 n , где  Î (0, ¥ ) - длина волны излучения.
Их выходные сигналы, отвечающие потоку излучения со спектральной плотностью e (  ) & #179; 0,  Î (0, ¥ ), далее называемой излучением, образуют вектор , w = . Определим суммарную спектральную чувствительность детекторов ,  Î (0, ¥ ), и соответствующий суммарный сигнал назовем яркостью излучения e . Вектор назовем цветом излучения e . Если цвет e  и само излучение назовем черным . Поскольку равенства и эквивалентны, равенство имеет смысл и для черного цвета, причем в этом случае - произвольный вектор, яркость оторого равна единице.
Излучение e & ;#61472;назовем белым и его цвет обозначим если отвечающие ему выходные сигналы всех детекторов одинаковы: . Векторы , и , , удобно считать элементами n -мерного линейного пространства . Векторы f e , соответствующие различным излучениям e , содержатся в конусе . Концы векторов содержатся в множестве , где Ï - гиперплоскость . Далее предполагается, что всякое излучение , где E - выпуклый конус излучений, содержащий вместе с любыми излучениями все их выпуклые комбинации (смеси) Поэтому векторы в образуют выпуклый конус , а векторы . Если то и их аддитивная смесь . Для нее . (1) Отсюда следует Лемма 1. Яркость f e и цвет j e любой аддитивной смеси e  излучений e 1 ( × ) e m ( × ) , m=1,2 определяются яркостями и цветами слагаемых . Подчеркнем, что равенство , означающее факт совпадения яркости и цвета излучений e  и , как правило, содержит сравнительно небольшую информацию об их относительном спектральном составе.
Однако замена e  на в любой аддитивной смеси излучений не изменит ни цвета, ни яркости последней.
Далее предполагается, что вектор w  таков, что в E можно указать базовые излучения , для которых векторы , j =1 n , линейно независимы.
Поскольку цвет таких излучений непременно отличен от черного, их яркости будем считать единичными , , j =1 n . В таком случае излучение характеризуется лишь цветом , j =1 n . Для всякого излучения e  можно записать разложение , (1*) в котором - координаты в базисе , или, в виде выходных сигналов детекторов излучения , где , выходной сигнал i- го детектора, отвечающий j- ому излучению e j ( × ), i , j =1 n . Матрица - стохастическая, поскольку ее матричные элементы как яркости базовых излучений неотрицательны и , j =1 n. При этом яркость и вектор цвета , , j =1 n , (конец которого лежит в Ï) определяются координатами a j и цветами излучений , j =1 n , и не зависят непосредственно от спектрального состава излучения e . В ряде случаев белое излучение естественно определять исходя из базовых излучений, а не из выходных сигналов детекторов, считая белым всякое излучение, которому в (1*) отвечают равные координаты: . Заметим, что слагаемые в (1*), у которых a j <0, физически интерпретируются как соответствующие излучениям, "помещенным" в левую часть равенства (1*) с коэффициентами - a j >0: . В такой форме равенство (1*) представляет “баланс излучений”. Определим в скалярное произведение и векторы , биортогонально сопряженные с : , i , j =1 n . Лемма 2. В разложении (1*) , j=1 n , . Яркость , где , причем вектор  ортогонален гиперплоскости Ï, так как , i,j=1 n. Что касается скалярного проиведения , то его естественно определять так, чтобы выходные сигналы детекторов были координатами f e в некотором ортонормированном базисе . В этом базисе конус . Заметим, что для любых векторов и, тем более, для , . Пусть Х - поле зрения, например, ограниченная область на плоскости R 2 , или на сетке , спектральная чувствительность j -го детектора излучения, расположенного в точке ; - излучение, попадающее в точку . Изображением назовем векторнозначную функцию (2**) Точнее, пусть Х - поле зрения, ( Х , С , ) - измеримое пространство Х с мерой  C - s -алгебра подмножеств X . Цветное (спектрозональное) изображение определим равенством , (2) в котором почти для всех , m -измеримые функции на поле зрения X , такие, что . Цветные изображения образуют подкласс функций лебеговского класса функций . Класс цветных изображений обозначим L E , n . Впрочем, для упрощения терминологии далее любой элемент называется цветным изображением, а условие (2*) условием физичности изображений f ( × ). Если f  - цветное изображение (2), то , как нетрудно проверить черно-белое изображение [2], т.е. , . Изображение , назовем черно-белым вариантом цветного изображения f , а цветное изображение , f(x) ¹ 0 , x Î X - цветом изображения f  . В точках множества Â={ x Î X : f ( x )=0} черного цвета  ( x ), x Î Â ï роизвольные векторы из , удовлетворяющие условию: яркость  ( x )=1. Черно-белым вариантом цветного изображения f  будем также называть цветное изображение b ( × ), имеющее в каждой точке Х ту же яркость, что и f  , b(x)=f(x), x Î X , и белый цвет, b (x)= b (x)/b(x)= b , x Î X. 3. Форма цветного изображения.
Понятие формы изображения призвано охарактеризовать форму изображенных объектов в терминах характерности изображений, инвариантных относительно определенного класса преобразований изображения, моделирующих меняющиеся условия его регистрации. Например, довольно часто может меняться освещение сцены, в частности, при практически неизменном спектральном составе может радикально изменяться распределение интенсивности освещения сцены.
Такие изменения освещения в формуле (2**) выражаются преобразованием , в котором множитель k(x) модулирует яркость изображения в каждой точке при неизменном распределении цвета.
При этом в каждой точке у вектора f (x) может измениться длина, но направление останется неизменным. Нередко изменение распределения интенсивности освещения сопровождается значительным изменением и его спектрального состава, но - пространственно однородным, одним и тем же в пределах всей изображаемой сцены.
Поскольку между спектром излучения e и цветом j нет взаимно однозначного соответствия, модель сопутствующего преобразования изображения f (x) в терминах преобразования его цвета j ( × ). Для этого определим отображение A ( × ): , ставящее в соответствие каждому вектору цвета подмножество поля зрения в точках которого изображение , имеет постоянный цвет . Пусть при рассматриваемом изменении освещения и, соответственно, ; предлагаемая модель преобразования изображения состоит в том, что цвет преобразованного изображения должен быть также постоянным на каждом множестве A ( j ), хотя, вообще говоря другим, отличным от j . Характекрным в данном случае является тот факт, что равенство влечет . Если - самое детальное изображение сцены, то, вообще говоря, на различных множествах A ( j ¢ ) и A ( j ) цвет изображения может оказаться одинаковым.
Как правило, следует учитывать непостоянство оптических характеристик сцены и т.д. Во всех случаях форма изображения должна быть инвариантна относительно преобразования из выделенного класса и, более того, должна определять изображение с точностью до произвольного преобразования из этого класса.
Для определения понятия формы цветного изображения f ( × ) на удобно ввести частичный порядок p , т.е. бинарное отношение, удовлетворяющее условиям: 1) , 2) , , то , ; отношение p должно быть согласованным с определением цветного изображения (с условием физичности), а именно, , если . Отношение p интерпретируется аналогично тому, как это принято в черно-белой морфологии[2], а именно, означает, что изображения f & ;#61472; и g  сравнимы по форме, причем форма g & ;#61472; не сложнее, чем форма f  . Если и , то f  и g  назовем совпадающими по форме (изоморфными), f  ~ g  . Например, если f  и g  - изображения одной и той же сцены, то g  , грубо говоря, характеризует форму изображенных объектов не точнее (подробнее, детальнее), чем f & ;#61481; , если . В рассматриваемом выше примере преобразования изображений  если между множествами A ( j ), и A ¢ ( j ¢ ), существует взаимно-однозначное соответствие, т.е если существует функция , такая, что A ¢ ( j ¢ ( j ))= A ( j ), , причем , если . В этом случае равенства и эквивалентны, и изоморфны и одинаково детально характеризуют сцену, хотя и в разных цветах.
Если же не взаимно однозначно, то A ¢ ( j ¢ )= U A ( j ) и . В этом случае равенство влечет (но не эквивалентно) , передает, вообще говоря, не все детали сцены, представленные в . Пусть, скажем, g  - черно-белый вариант f & #61481; , т.е. g(x)=f(x) и g (x)/g(x)= b , x Î X . Если преобразование - следствие изменившихся условий регистрации изображения, то, естественно, . Аналогично, если f & ;#61484; g & ;#61472; изображения одной и той же сцены, но в g & ;#61484; вследствие неисправности выходные сигналы некоторых датчиков равны нулю, то . Пусть F - некоторая полугруппа преобразований , тогда для любого преобразования F Î F , поскольку, если некоторые детали формы объекта не отражены в изображении f , то они, тем более, не будут отражены в g . Формой изображения f  назовем множество изображений , форма которых не сложнее, чем форма f` , и их пределов в (черта символизирует замыкание в ). Формой изображения f & ;#61472; в широком смысле назовем минимальное линейное подпространство , содержащее . Если считать, что для любого изображения , то это будет означать, что отношение p непрерывно относительно сходимости в в том смысле, что.
– Конец работы –
Используемые теги: Морфологический, анализ, цветных, спектрозональных, изображений0.09
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Морфологический анализ цветных (спектрозональных) изображений
Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Твитнуть |
Новости и инфо для студентов