рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Линейная зависимость векторов

Линейная зависимость векторов - раздел Математика, Линейная Зависимость Векторов. Пусть Задана Система Векторов А 1 , А 2 , А 3...

ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ. Пусть задана система векторов а 1 , а 2 , а 3 ,…,а л (1) одной размерности.Определение: система векторов (1) называется линейно-независимой, если равенство a 1 а 1 + a 2 а 2 +…+ a л а л =0 (2) выполняется лишь в том случае, когда все числа a 1 , a 2 ,…, a л =0 и Î R Определение: система векторов (1) называется линейно-зависимой, если равенство (2) выполнимо хотя бы при одном a i ¹ 0 (i=1,…,k) Свойства 1. Если система векторов содержит нулевой вектор, то она линейно зависима 2. Если система векторов содержит линейно-зависимую подсистему векторов, то она будет линейно-зависимой. 3. Если система векторов линейно-независима, то и любая ее подсистема будет линейно независимой. 4. Если система векторов содержит хотя бы один вектор, являющийся линейной комбинацией других векторов, то эта система векторов будет линейно зависимой.

Определение: два вектора называются коллинеарными, если они лежат на параллельных прямых.

Определение: три вектора называются компланарными, если они лежат в параллельных плоскостях. Теорема: Если заданы два вектора a и b, причем а ¹ 0 и эти векторы коллинеарны, то найдется такое действительное число g , что b= g a. Теорема: Для того что бы два вектора были линейно-зависимы необходимо и достаточно, что бы они были коллениарны. Доказательство: достаточность.Т.к. векторы коллинеарны, то b= g a. Будем считать, что а,b ¹ 0 (если нет, то система линейно-зависима по 1 свойству). 1b- g a=0. Т.к. коэфф.

При b ¹ 0, то система линейно зависима по определению. Необходимость. Пусть а и b линейно-зависимы. a а+ b b=0, a ¹ 0. а= -b/ a *b. а и b коллинеарны по определению умножения вектора на число. Теорема: для того, чтобы три вектора были линекно-зависимы необходимо и достаточно, чтобы они были компланарны. Необходимость. Дано: a, b, c – линейно-зависимы. Доказать: a, b, c – компланарны.Доказательство: т.к. векторы линейно-зависимы, то a а+ b b+ g c=0, g ¹ 0. с= - a / g *а - b / g *b. с-диагональ параллелограмма, поэтому a, b, c лежат в одной плоскости.

БАЗИС СИСТЕМЫ ВЕКТОРОВ. РАЗЛИЧНЫЕ СИСТЕМЫ КООРДИНАТ. 1. Определение: пусть задана некоторая система векторов. Базисом этой системы называется мах. совокупность линейно-независимых векторов системы. В множестве векторов на прямой базис состоит из одного ненулевого вектора.В качестве базиса множества векторов на плоскости можно взять произвольную пару. В множестве векторов в трехмерном пространстве базис состоит из трех некомпланарных векторов. 2. Прямоугольная (декартова) система координат на плоскости определяется заданием двух взаимно перпендикулярных прямых с общим началом и одинаковой масштабной ед. на осях. Прямоугольная (декартова) система координат в пространстве определяется заданием трех взаимно перпендикулярных прямых с общей точкойпересечения и одинаковой масштабной ед. на осях. СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ. Определение: скалярным произведением двух векторов называется произведение длин двух векторов на косинус угла между ними. (а,b)=|a| |b| cos u, u<90, пр-е полож.; u=90, пр-е =0; u>90, пр-е отриц.

Свойства: 1. (а,b)= (b,а) 2. ( a а,b)= a (а,b) 3. (а+b,с)= (а,с)+ (b,с) 4. (а,а)=|a| 2 – скал.квадрат.

Определение: два вектора называются ортоганальными, когда скалярное пр-е равно 0. Определение: вектор называется нормированным, если его скал.кв.равен 1. Определение: базис множества векторов называется ортонормированным, если все векторы базиса взаимно-ортагональны и каждый вектор нормирован.

Теорема: Если векторы а и b заданы координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений соответствующих координат.Найдем формулу угла между векторами по определению скалярного произведения. cos u=a,b/|a||b|=x 1 x 2 +y 1 y 2 +z 1 z 2 /sqrt(x 1 2 +y 1 2 +z 1 2 )*sqrt(x 2 2 +y 2 2 +z 2 2 ) ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ. Определение: векторным произведением двух векторов a и b обозначаемым [a,b] называется вектор с удовлетворяющий след. требованиям: 1. |c|=|a||b|sin u. 2. (с,а)=0 и (с,b)=0. 3. а, b, с образуют правую тройку.

Свойства: 1. [a,b]= - [b,a] 2. [ a а,b]= a [а,b] 3. [a+b,c]=[a,c]+[b,c] 4. [a,a]=0 Теорема: Длина векторного произведения векторов равна площади параллелограмма построенного на этих векторах.Доказательство: справедливость теоремы вытекает из первого требования определения векторного произведения.

Теорема: Пусть векторы а и b заданы координатами в ортонормированном базисе, тогда векторное произведение равно определителю третьего порядка в первой строке которого наход-ся базисны векторы, во второй – координаты первого вектора, в третьей – координаты второго.Определение: ортой вектора а называется вектор ед. длины имеющий одинаковое направление с вектором а. e a =a/|a| РАЗЛИЧНЫЕ УРАВНЕНИЯ ПРЯМОЙ НА ПЛОСКОСТИ. 1.Общее ур-е пр. 2. Ур-е пр. в отрезках. 3. Каноническое ур-е пр. 4. Ур-е пр. ч/з две точки. 5. Ур-е пр. с углов. коэфф. 6. Нормальное ур-е прямой. Расст. от точки до прямой. 7. Параметрическое ур-е пр. 8. Пучок пр. 9.Угол между пр. 1. Ах+By+C=0 (1), где A, B одновр.не равны нулю. Теорема: n(A,B) ортоганален прямой заданной ур-ем (1). Доказательство: подставим коорд. т. М 0 в ур-е (1) и получим Ах 0 +By 0 +C=0 (1’). Вычтем (1)-(1’) получим А(х-х 0 )+B(y-y 0 )=0, n(A,B), М 0 М(х-х 0 , y-y 0 ). Слева в полученном равенстве записано скалярное произведение векторов, оно равно 0, значит n и M 0 M ортоганальны. Т.о. n ортоганлен прямой.

Вектор n(A,B) называется нормальным вектором прямой.

Замечание: пусть ур-я А 1 х+B 1 y+C 1 =0 и А 2 х+B 2 y+C 2 =0 определяют одну и ту же прямую, тогда найдется такое действительное число t, что А 1 =t*А 2 и т.д. Определение: если хотя бы один из коэффициентов в ур-ии (1) =0, то ур-е называется неполным. 1. С=0, Ах+By=0 – проходит ч/з (0,0) 2. С=0, А=0, By=0, значит у=0 3. С=0, B=0, Ах=0, значит х=0 4. А=0, By+C=0, паралл.

ОХ 5. B=0, Ах+C=0, паралл.OY 2. x/a+y/b=1. Геом.смысл: прямая отсекает на осях координат отрезки а и b 3. x-x 1 /e=y-y 1 /m Пусть на прямой задана точка и напр. вектор прямой (паралл.пр.). Возьмем на прямой произв. точки. q и M 1 М(х-х 1 ; y-y 1 ) 4. x-x 1 /x 2 -x 1 =y-y 1 /y 2 -y 1 Пусть на прямой даны две точки М 1 (x 1 ;y 1 ) и М 2 (x 2 ;y 2 ). Т.к. на прямой заданы две точки, то задан направляющий вектор q(x 2 -x 1 ; y 2 -y 1 ) 5. y=kb+b. u – угол наклона прямой.

Tg угла наклона называется угловым коэффициентом прямой k=tg u Пусть прямая задана в каноническом виде. Найдем угловой коэффициент прямой tg u = m/e. Тогда видим x-x 1 /e/e=y-y 1 /m/e. y-y 1 =k(x-x 1 ) при y 1 -kx 1 =b, y=kx+b 6. xcos q +ysin q -P=0 q - угол между вектором ОР и положительным напр. оси ОХ. Задача: записать ур-е прямой , если изветны Р и q Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cos q , sin q ). Пусть М(x,y) – произв.точка прямой.

Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cos q x+sin q y. Приравняем правые части.Задача: прямая задана общим ур-ем. Перейти к норм. виду. Ах+By+C=0 xcos q +ysin q -P=0 т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.

Cos 2 q =(A*t) 2 Sin 2 q =(B*t) 2 -p=C*t cos 2 q +sin 2 q =t 2 (A 2 +B 2 ), t 2 =1/A 2 +B 2 , t= ± sqrt(1/ A 2 +B 2 ). Sign t= - sign C Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t. Аtх+Bty+Ct=0, t-нормирующий множитель. 7. Система: x=et+x 1 и y=mt+y 1 НОРМАЛЬНОЕ УРАВНЕНИЕ ПРЯМОЙ. Расстояние от точки до прямой. 1. xcos q +ysin q -P=0 q - угол между вектором ОР и положительным напр. оси ОХ. Задача: записать ур-е прямой , если изветны Р и q Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cos q , sin q ). Пусть М(x,y) – произв.точка прямой.

Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cos q x+sin q y. Приравняем правые части. Задача: прямая задана общим ур-ем. Перейти к норм. виду. Ах+By+C=0 xcos q +ysin q -P=0 т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.Cos 2 q =(A*t) 2 Sin 2 q =(B*t) 2 -p=C*t cos 2 q +sin 2 q =t 2 (A 2 +B 2 ), t 2 =1/A 2 +B 2 , t= ± sqrt(1/ A 2 +B 2 ). Sign t= - sign C Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t. Аtх+Bty+Ct=0, t-нормирующий множитель. 2. Обозначим d – расстояние от точки до прямой, а ч/з б – отклонение точки от прямой. б=d, если нач.коорд. и точка по разные стороны; = - d, если нач.коорд. и точка по одну сторону.

Теорема: Пусть задано нормальное уравнение прямой xcos q +ysin q -P=0 и М 1 (x 1 ;y 1 ), тогда отклонение точки М 1 = x 1 cos q +y 1 sin q -P=0 Задача: найти расстояние от точки М 0 (x 0 ;y 0 ) до прямой Ах+By+C=0. Т.к. d=|б|, то формула расстояний принимает вид d=| x 0 cos q +y 0 sin q -P|. d=|Ах 0 +By 0 +C|/sqrt(A 2 +B 2 ) ГИПЕРБОЛА. Определение: ГМТ на плоскости модуль разности расстояний от которых до двух фиксированных точек, называемых фокусами, есть величина постоянная Каноническое уравнение: Будем считать, что фокусы гиперболы находятся на ОХ на одинаковом расстоянии от начала координат. |F 1 F 2 |=2c, М – произвольная точка гиперболы. r 1 , r2 – расстояния от М до фокусов; |r 2 -r 1 |=2a; a<c; , x 2 c 2 -2a 2 xc+a 2 =a 2 (x 2 -2xc+c 2 +y 2 ) x 2 (c 2 -a 2 )-a 2 y 2 =a 2 (c 2 -a 2 ) c 2 -a 2 =b 2 x 2 b 2 -a 2 y 2 =a 2 b 2 - каноническое ур-е гиперболы ПАРАБОЛА. Определение: ГМТ на плоскости расстояние от которых до фиксированной точки на плоскости, называемой фокусом, равно расстоянию до фиксированной прямой этой плоскости называемой директрисой. Каноническое уравнение: Пусть фокус параболы находится на оси ОХ, а директриса расположение перпендикулярно оси ОХ, причем они находятся на одинаковом расстоянии от начала координат. |DF|=p, М – произвольная точка параболы; К – точка на директрисе; МF=r; MK=d; r=sqrt((x-p/2) 2 +y 2 ); d=p/2+x Приравниваем и получаем: y 2 =2px - каноническое уравнение параболы ЭКСЦЕНТРИСИТЕТ И ДИРЕКТРИСА ЭЛЛИПСА И ГИПЕРБОЛЫ. 1. Определение: эксцентриситет – величина равная отношению с к а. е=с/а е эллипсв <1 (т.к. а>c) е гиперболы >1 (т.к. с>a) Определение: окружность – эллипс у которого а=b, с=0, е=0. Выразим эксцентриситеты через а и b: е эллипса является мерой его “вытянутости” е гиперболы характеризует угол раствора между асимптотами 2. Директрисой D эллипса (гиперболы), соответствующей фокусу F, называется прямая расположенная в полуплоскости a перпендикулярно большой оси эллипса и отстоящий от его центра на расстоянии а/е>a (а/е<a) D 1 : x= - a/e D 2 : x= a/e р=а(1-е 2 )/е – для эллипса р=а(е 2 -1)/е – для гиперболы ТЕОРЕМА ОБ ОТНОШЕНИИ РАССТОЯНИЙ. 2-ОЕ ОПРЕДЕЛЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ. Теорема: Отношение расстояния любой точки эллипса (гиперболы) до фокуса к расстоянию от нее до соответствующей директрисы есть величина постоянная равная е эллипса (гиперболы). Доказательство: для эллипса. r 1 /d 1 =e x &#163; |a|, xe+a>0 r 1 =xe+a d 1 – расстояние от М(x,y) до прямой D 1 xcos180+ysin180-p=0 x=-p x=-a/e б м =-x-a/e d 1 =-б м (минус, т.к. прямая и точка по одну стороно о начала коорд.) Определение: ГМТ на плоскости, отношение расстояния от которых до фокуса, к расстоянию до соответствующей директрисы есть величина постоянная и представляет собой эллипс, если <1, гиперболу, если >1, параболу, если =1. ПОЛЯРНОЕ УРАВНЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ. Пусть задан эллипс, парабола или правая ветвь гиперболы.

Пусть задан фокус этих кривых.

Поместим полюс полярной системы в фокус кривой, а полярную ось совместим с осью симметрии, на которой находится фокус. r= r d=p+ r cos j e= r /p+ r cos j - полярное уравнение эллипса, параболы и правой ветви гиперболы.

КАСАТЕЛЬНАЯ К КРИВОЙ 2-ГО ПОРЯДКА. Пусть задан эллипс в каноническом виде. Найдем уравнение касательной к нему, проходящей через М 0 (x 0 ;y 0 ) – точка касания, она принадлежит эллипсу значит справедливо: у-у 0 =y’(x 0 )(x-x 0 ) Рассмотрим касательную к кривой следовательно ya 2 y 0 -a 2 y 0 2 +b 2 x 0 x-b 2 x 0 2 =0 - уравнение касательной к эллипсу. - уравнение касательной к гиперболе. - уравнение касательной к параболе. ПРЕОБРАЗОВАНИЕ ДЕКАРТОВЫХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ НА ПЛОСКОСТИ. Преобразование на плоскости есть применение преобразований параллельного переноса и поворота.

Пусть две прямоугольные системы координат имеют общее начало.

Рассмотрим все возможные скалярные произведения базисных векторов двумя способами: (е 1 ;е 1 ’)=cos u (е 1 ;е 2 ’)=cos (90+u)= -sin u (е 2 ;е 1 ’)=cos (90-u)=sin u (е 2 ;е 2 ’)=cos u Базис рассматривается ортонормированный: (е 1 ;е 1 ’)=(е 1 , a 11 е 1 + a 12 е 2 )= a 11 (е 1 ;е 2 ’)= (е 1 , a 21 е 1 + a 22 е 2 )= a 21 (е 2 ;е 1 ’)= a 12 (е 2 ;е 2 ’)= a 22 Приравниваем: a 11 =cos u a 21 = - sin u a 12 =sin u a 22 =cos u Получаем: x=a+x’cos u – y’sin u y=b+x’sin u – y’cos u - формулы поворота системы координат на угол u. x=a+x’ y=b+y’ - формулы параллельного переноса ИНВАРИАНТЫ УРАВНЕНИЯ ЛИНИЙ 2-ГО ПОРЯДКА. Определение: Инвариантой ур-я (1) линии второго порядка относительно преобразования системы координат, называется функция зависящая от коэффициентов ур-я (1) и не меняющая своего значения при преобразовании системы координат.

Теорема: инвариантами уравнения (1) линии второго порядка относительно преобразования системы координат являются следующие величины: I 1 ; I 2 ; I 3 Вывод: при преобразовании системы координат 3 величины остаются неизменными, поэтому они характеризуют линию.

Определение: I 2 >0 – элиптический тип I 2 <0 – гиперболический тип I 2 =0 – параболический тип ЦЕНТР ЛИНИИ 2-ГО ПОРЯДКА. Пусть задана на плоскости линия уравнением (1). Параллельный перенос: Параллельно перенесем систему XOY на вектор OO’ т.о. что бы в системе X’O’Y’ коэфф. при x’ и y’ преобразованного уравнения кривой оказались равными нулю. После этого: a 11 x’ 2 +2a 12 x’y’+a 22 y’ 2 +a’ 33 =0 (2) точка О’ находится из условия: a 13 ’=0 и a 23 ’=0. Получается система a 11 x 0 +a 12 y 0 +a 13 =0 и a 12 x 0 +a 22 y 0 +a 23 =0 Покажем, что новое начало координат (если система разрешима) является центром симметрии кривой: f(x’;y’)=0, f(-x’;-y’)= f(x’;y’) Но точка О’ существует если знаменатели у x 0 и y 0 отличны от нуля. Точка O’ – единственная точка.

Центр симметрии кривой существует если I 2 &#185; 0 т.е. центр симметрии имеют линии элиптического и гиперболического типа Поворот: Пусть система XOY повернута на угол u. В новой системе координат уравнение не.

– Конец работы –

Используемые теги: ная, Зависимость, векторов0.066

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Линейная зависимость векторов

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Линейная зависимость векторов
Линейная зависимость векторов Вектор из... Если же то для свободных неизвестных мы возьмем произвольные числовые значения после чего двигаясь по системе...

ЛИНЕЙНАЯ АЛГЕБРА
Расчетные задания... Задача Образует ли линейное пространство заданное множество в котором... Множество всех векторов трехмерного пространства координаты которых целые числа...

РЕФЕРАТ ПО ДИСЦИПЛИНЕ НА ТЕМУ: СОВРЕМЕННОЕ СОСТОЯНИЕ МИРОВОГО РЫНКА НЕФТИ И ПРОГНОЗЫ РАЗВИТИЯ. 2. Анализ современного состояния нефти в россии
РОССИЙСКОЙ ФЕДЕРАЦИИ... ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ... ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ...

Лекция N 3 Представление синусоидальных величин с помощью векторов и комплексных чисел
Величина обратная периоду есть частота измеряемая в герцах Гц... Диапазон частот применяемых в технике от сверхнизких частот cedil... Мгновенное значение переменной величины есть функция времени Ее принято обозначать строчной буквой...

Курский филиал Варианты контрольных работ Линейная алгебра
Федеральное государственное бюджетное образовательное учреждение... Высшего профессионального образования... Российский государственный торгово экономический университет...

Вопросы, выносимые на экзамен по дисциплине Линейная алгебра
Задание... Выполните следующие действия с комплексными числами записанными в алгебраической форме...

Линейная алгебра
Решение системы трех линейных уравнений методом Крамера... Рассмотрим систему трех линейных уравнений с тремя неизвестными...

Линейная алгебра и ФНП
Основная и дополнительная литература... Основная литература Канатников А Н Крищенко А П Линейная алгебра Учеб для вузов Под ред B C Зарубина А П Крищенко М Изд во МГТУ им Н Э Баумана...

ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ
учреждение высшего профессионального образования... Набережночелнинский институт Казанского Приволжского федерального университета...

Дисциплин Линейная и векторная алгебра
ЛУГАНСКИЙ НАЦИОНАЛЬНЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ... Л И Леви Е А Рыбинцева Кафедра...

0.031
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам