рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Виды средней арифметической

Виды средней арифметической - раздел Математика, СТАТИСТИКА. КУРС ЛЕКЦИЙ Если При Группировке Значения Осредняемого Признака Заданы Интервалами, То Пр...

Если при группировке значения осредняемого признака заданы интервалами, то при расчете средней арифметической величины в качестве значения признака в группах принимаются середины этих интервалов, т.е. исходят из гипотезы о равномерном распределении единиц совокупности по интервалу значений признака. Для открытых интервалов в первой и последней группе, если таковые есть, значения признака надо определить экспертным путем исходя из сущности, свойств признака и совокупности. Например, у нас есть данные о распределении рабочих предприятия по возрасту:

 

 

Распределение рабочих предприятия по возрасту

Группы рабочих по возрасту, лет Число рабочих fi Середина интервала х'i xifi
До 20 18,5
20-30
30-40
40-50
Старше 50 57,5
Итого  

Рассмотрим первый интервал, логично считать. Что младше 17 лет вряд ли будут работать на предприятии, следовательно, первый интервал 0т 17 до 20 лет. Последний интервал логично выбрать 50 - 65 лет. Посчитаем середину интервала: (17+20):2 = 18,5. Аналогично высчитываем середину последнего интервала. Суммируем второй столбец и получаем число рабочих предприятия - 359. Далее заполняем последний столбец и суммируем итог - 12408. Теперь можно вычислить средний возраст рабочих по формуле средней взвешенной с заменой точных значений признака в группах серединами интервалов:

что можно и внести в итоговую строку таблицы.

Перейдем к рассмотрению средних вторичных (относительных) признаков. Сумма таких показателей сама по себе реальной величиной какого-либо признака в совокупности не является. Однако общее определение арифметической средней сохраняет силу и в этом случае. При вычислении таких средних величин необходимо, чтобы сохранялась сумма величины объемного признака, который является числителем при построении осредняемого относительного показателя. Например, при вычислении средней величины урожайности какой-либо культуры (по формуле (2)) необходимо, чтобы общий объем валового сбора этой культуры остался неизменным при замене индивидуальных величин урожайности средней величиной. Нельзя менять реальную величину объемного признака - она является базой расчета средней. Чтобы выполнить указанное условие, в качестве весов при расчете средней величины относительного показателя необходимо принять значение того признака, который является знаменателем при определении относительного показателя. Так, при вычислении средней урожайности по совокупности хозяйств весами должны быть размеры площади данной культуры.

Рассмотрим пример расчета средней доли предметов народного потребления в общем выпуске промышленной продукции по совокупности предприятий, представленных в таблице:

 

Номера предприятий Объем всей продукции, млн. руб., fi Доля товаров народного потребления, % xi Объем выпуска товаров народного потребления, млн. руб., хifi
103,5
247,0
124,8
140,2
Итого   615,5

В этом случае весом должна быть общий объем всей продукции предприятия. Тогда средняя доля предметов народного потребления в продукции четырех предприятий равна: = (615,5 : 2047) * 100% = 30,07 %. Теперь эти цифры можно внести в соответствующую графу таблицы. Числитель средней величины ∑хi fi - это объем выпуска предметов потребления всеми предприятиями - величина, которая должна сохраняться неизменной при замене разных четырех долей на среднюю долю. Расчет по данным таблицы проведен на основе известных индивидуальных значениях усредняемого признака.

Однако исходная информация может иметь другую форму: индивидуальные значения усредняемого признака могут быть неизвестны, зато известны индивидуальные или суммарные значения объемных признаков как числителя, так и знаменателя относительной величины. Например, известно, что в акционерном сельскохозяйственном предприятии было посажено 145 га картофеля и собрано с них 2595,5 т продукции. При этом совершенно неизвестно, сколько было собрано с каждого гектара из 145 га в отдельности, хотя на самом деле, конечно, индивидуальные величины существовали объективно. Однако никакой потребности в их раздельном учете нет; учет продукции ведется по бригадам, по отдельным полям севооборота, но не по каждому гектару. Среднюю урожайность картофеля получают попросту делением массы собранного продукции на площадь посадки, т.е. как относительную величину, характеризующее хозяйство в целом:

Средняя урожайность = (валовой сбор, т)/(площадь посадки, га) = 2595,5/145= 17,9 т/га. По отношению к предприятию это относительный показатель. Но существуют и сами значения урожайности с каждого из 145 га, хотя и неучтенные. По отношению к ним 17,9 - это средняя величина. Такую форму определения средней арифметической называют неявной формой средней.

– Конец работы –

Эта тема принадлежит разделу:

СТАТИСТИКА. КУРС ЛЕКЦИЙ

РАЗДЕЛ I ОПИСАТЕЛЬНАЯ СТАТИСТИКА... Тема Статистика как наука Методы статистики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Виды средней арифметической

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СТАТИСТИКА. КУРС ЛЕКЦИЙ
         

Общее понятие статистики. Предмет статистики.
Слово "статистика" происходит от латинского слова status - состояние, положение вещей. Первоначально оно употреблялось в значении "политическое состояние". Отсюда и итальянское

Статистическое исследование. Методы статистики
Статистика изучает совокупности однокачественных явлений в конкретных условиях места и времени. И, следовательно, статистика располагает всегда ограниченным числом данных. Каждое явление возникает

Статистическое наблюдение. Виды статистического наблюдения.
Статистическое наблюдение - это массовое, планомерное, научно организованное наблюдение за явлениями экономической и социальной жизни. Это наблюдение может проводиться органами государственной стат

Сущность и значение статистических показателей. Показатель и его атрибуты
Мы уже говорили, что статистика изучает массовые явления, процессы количественно в числовой форме. Но "числа", применяемые в статистике, это не абстрактные числа математики, которые харак

Общие принципы построения относительных статистических показателей
При построении относительных статистических показателей необходимо соблюдать следующие принципы. Принцип 1. Сравниваемые абсолютные показатели в относительных величинах должны быть

Понятие о системах статистических показателей
Как правило, изучаемые статистикой процессы и явления, достаточно сложны и поэтому их сущность не может быть выражены в отдельном показателе. В таких случаях используют систему статистических показ

Роль и значение статистических показателей в управлении экономическими и социальными процессами
Основной функцией конкретных статистических показателей и их систем является познавательная информационная функция. Без статистической информации невозможно познание закономерностей природны

Статистические таблицы
Статистические данные должны быть представлены так, чтобы ими можно было пользоваться. Существуют три способа представления данных: они могут быть включены в текст, представлены в таблицах или выра

Распределение занятого населения России по секторам экономики (млн. человек)
  Всего занято в экономике В том числе: 72,1 66,0 На государст

Основные виды графиков
Иногда статистические таблицы дополняются графиками, когда ставится цель подчеркнуть какую-то особенность данных, провести их сравнение. Графики являются самой эффективной формой представления данн

Карты и картограммы.
Картограммы и картодиаграммы применяются для изображения графической характеристики изучаемых явлений. Они показывают размещение изучаемого явления, его интенсивность на определенной территории - в

Значение и сущность группировки. Построение группировки
Изучаемые статистикой массовые явления и процессы протекают в множествах элементов (единиц) некоторого вида, или совокупностях. Определить совокупность – значит определить входящие в нее элементы,

Виды группировок
В зависимости от числа положенных в основание группировки признаков различают простые и многомерные группировки. Простой называется группировка, выполненная по одному признаку. Среди прост

В апреле 1994 г.
Группа населения по размеру среднедушевого денежного дохода, тыс. руб. в месяц Численность населения Всего млн. ч. % к ит

По сумме активов баланса (данные условные)
Группа банков по сумме активов баланса, млн. руб. Количество банков, единиц В среднем на один банк Численность занятых, ч

И числу детей в 1989 г.
(по материалам переписи населения) Группа семей по месту проживания В том числе подгруппа семей по числу детей Число се

Многомерные группировки
Группировка, осуществляемая одновременно по комплексу признаков называется многомерной. Характеристика одной и той же стороны изучаемого явления может быть дана с помощью набора пр

Средняя арифметическая величина. Свойства средней арифметической величины
Как мы уже говорили раньше, статистика изучает массовые явления и процессы. Каждое такое явление обладает как общими для всей совокупности свойствами, так и особенными, индивидуальными свойствами.

Понятие средней арифметической
Виды средних величин отличают, прежде всего, тем, какое свойство, какой параметр исходной варьирующей массы индивидуальных значений признака должен быть сохранен неизменным. Средней ари

Свойства арифметической средней
1. Сумма отклонений индивидуальных значений признака от его среднего значения равна нулю. Доказательство:

Средняя квадратическая величина
Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить н

Средняя геометрическая величина
Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то применяют среднюю геометрическую величину. Её формула так

Средняя гармоническая величина
Если по условиям задачи необходимо, чтобы неизменной оставалась при осреднении сумма величин, обратных индивидуальным значениям признака, то средняя величина является гармонической средней. Иными с

Вариации массовых явлений. Построение вариационного ряда
Составной частью сводной обработки данных статистического наблюдения является построение рядов распределения. Как мы уже говорили ранее, в зависимости от того, является признак, взятый за основу гр

Структурные характеристики вариационного ряда. Показатели размера и интенсивности вариации.
При изучении вариации применяются такие характеристики вариационного ряда, которые описывают количественно его структуру, строение. К ним относят медиану и моду, которые еще часто называют структур

Показатели размера и интенсивности вариации.
Абсолютные средние размеры вариации. Следующим этапом изучения вариации признака в совокупности является измерение характеристик величины вариации. Простейшим из них служит

Относительное отклонение по модулю m
3) коэффициент вариации как относительное квадратическое от

Закономерности распределения.
В приведенном примере можно заметить определенную зависимость между изменением варьирующегося признака и частот. Частоты в этих рядах с увеличением значения признака первоначально увеличиваются, а

Тема 6. Выборочное наблюдение.
  1. Способы формирования выборочной совокупности. Виды выборки. 2. Ошибка выборки. 3. Определение необходимой численности выборки. 4. Малая выборка.

Ошибка выборки
Развитие современной теории выборочного наблюдения началось с простой случайной выборки. В процессе проведения выборочного наблюдения, как и вообще при анализе данных любого обследования в

Определение необходимой численности выборки.
Средняя квадратическая (стандартная) ошибка выборки зависит от объема выборки и степени вариации признака в генеральной совокупности. Уменьшение стандартной ошибки выборки, а следовательно увеличен

Малая выборка
Таблицы интеграла вероятностей используются для выборок большого объема из бесконечно большой генеральной совокупности. Но уже при n > 100 получается несоответствие между табличными данными и ве

Понятие о статистической и корреляционной связи
Невозможно управлять явлениями, предсказывать их развитие без изучения характера, силы и других особенностей связей. Поэтому методы измерения связей составляют важную часть статистического анализа.

Парная регрессия на основе метода наименьших квадратов и метода группировок.
Парная регрессия характеризует связь между двумя признаками: результативным и факторным. Аналитически связь между ними описывается уравнениями: прямой :

Множественная (многофакторная) регрессия.
Изучение связи между тремя и более связанными между собой признаками носит название множественной регрессии. При исследовании зависимостей методами множественной регрессии задача формулируется так

Оценка тесноты связи.
Измерение тесноты и направления связи между признаками предлагает определение меры соответствия вариации результативного признака от одного (при изучении парных зависимостей) или нескольких (множес

Проверка значимости параметров регрессии.
Проверка статистической значимости всех параметров, полученных в процессе корреляционно-регрессионного анализа, основывается на предположении, что все эти параметры, а точнее, их значения являются

Методы выявления типа тенденции динамики
Ряд динамики может быть подвержен влиянию различных факторов. Под действием эволюционных факторов происходят изменения, которые определяют общие направления развития, называемые тенденцией или т

Методика измерения параметров тренда
После того как установлено наличие тенденции в ряду динамики производится её описание с помощью уравнений, отражающих те или иные качественные свойства развития. Эта процедура называется методом сг

Методика изучения и показатели колеблемости
Если при изучении и измерении тенденции динамики колебания уровней играют лишь роль помех, то в дальнейшем они сами становятся предметом статистического исследования. Типы колебаний весьма разнообр

Прогнозирование на основе тренда
Методика статистического прогноза по тренду и колеблемости основана на их экстраполяции, т.е. на предположении, что параметры тренда и колеблемости сохраняться до прогнозируемого периода. Такая экс

Агрегатные и средние индексы
Агрегатный индекс – сложный относительный показатель, который характеризует среднее изменение социально-экономического явления, состоящего из несоизмеримых элементов. Латинское слово «агрега

Средние индексы
Помимо агрегатных индексов в статистике применяется другая их форма – средневзвешенные индексы. К их исчислению прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать об

Индексы структурных сдвигов
При изучении динамики качественных показателей приходится определять изменение средней величины индексируемого показателя, которое может быть вызвано действием двух факторов – изменением значения и

Индексы пространственно-территориального сопоставления
В статистической практике часто возникает потребность в сопоставлении уровней экономического явления в пространстве: по странам, экономическим районам, , областям, т.е. в исчислении территориальных

Экономические индексы Ласпейреса, Пааше, Фишера. Индексы-дефляторы.
В рыночном хозяйстве особое место среди индексов качественных показателей отводится индексам цен. Основным назначением индекса цен является оценка динамики цен на товары производственного и непроиз

Границы и условия применения индексного метода
Индексный метод предполагает, что связь между признаками является жестко детерминированной, которая проявляется как в каждом отдельном случае (для отдельного товара, вида продукции, предприятия), т

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги