рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Розв’язання

Розв’язання - раздел Математика, МАТЕМАТИКА Знайдемо Визначник Системи За Формулою (1.2.3) ...

Знайдемо визначник системи за формулою (1.2.3)

Система має єдине рішення, тому що .

Обчислимо додаткові визначники:

Отже, за формулами Крамера (1.6.4), маємо розв’язок системи:

; ;

Після відшукання розв’язку системи рекомендується зробити перевірку, підставивши добуті значення змінних у рівняння системи, й переконатися, що вони перетворюються на правильні рівності.

Метод оберненої матриці. Для того, щоб розв’язати систему лінійних рівнянь (1.6.3) методом оберненої матриці, необхідно:

1. Знайти визначник матриці коефіцієнтів при змінних.

2. Якщо , знайти обернену матрицю .

3. Використовуючи правило множення матриць, помножити обернену матрицю справа на стовпець вільних членів:

, (1.6.5)

де матриця-стовпець є рішенням системи лінійних рівнянь.

Приклад 1.6.2. Розв’язати методом оберненої матриці систему рівнянь

Розв’язання Для розв’язання системи методом оберненої матриці позначимо

; ; .

Тоді в матричній формі система має вид: .

Знайдемо визначник матриці :

Матриця має обернену матрицю , тому що .

Знаходимо обернену матрицю за формулою (1.4.2/), обчисливши попередньо алгебраїчні доповнення всіх елементів матриці .

; ; ; ; ; ; ; ; .

.

Тепер за формулою (1.6.5) знаходимо розв’язок системи:

Відповідь: ; ;

Недоліком розв’язання системи лінійних рівнянь з змінними за формулами Крамера та матричним способом є незручність і велика трудомісткість їх використання у випадку, коли система має більше трьох невідомих, що пов’язано з обчисленням визначників четвертого і більшого порядків.

Метод Гаусса. Розглянемо систему (1.6.1) лінійних рівнянь з невідомими в загальному випадку. Як вже було зауважено, що метод Крамера й метод оберненої матриці пов’язані з великою обчислювальною роботою. Існують більш економічні методи розв’язування систем лінійних рівнянь, що ґрунтуються на попередньому перетворенні системи.

Елементарними перетвореннями системи (1.6.1) називаються наступні перетворення:

1) перестановка двох довільних рівнянь системи;

2) множення обох частин рівняння на відмінне від нуля число;

3) додавання до обох частин рівняння відповідних частин другого, помножених на одне і теж саме число.

Елементарні перетворення переводять дану систему рівнянь у еквівалентну систему. Дві системи лінійних рівнянь називаються еквівалентними, якщо кожне рішення однієї системи, якщо воно існує, є рішенням другої, та навпаки.

Метод Гаусса – метод послідовного виключення невідомих – полягає у тому, що за допомогою елементарних перетворень система рівнянь приводиться до рівносильної системи трикутного виду, з якої послідовно, починаючи з останніх (за номером) невідомих, знаходять всі інші невідомі.

Метод Гаусса успішно застосовується для будь-якої кількості невідомих в лінійної системи.

Приклад 6.3. Розв’язати систему лінійних рівнянь методом Гаусса.

– Конец работы –

Эта тема принадлежит разделу:

МАТЕМАТИКА

УКРАЇНИ... Донецький національний університет економіки і торгівлі імені Михайла... Кафедра вищої і прикладної математики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Розв’язання

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Фоміна Т.О.
Ф 76 Математика для економістів. Метод. вказ. для практ. занять та орг. самост. роботи студ. напряму підготовки «Економіка підприємства» / Т.О. Фоміна; М-во освіти і науки, молоді та спорту України

Поняття числової матриці
Дуже часто для розв’язання економічних задач використовують поняття „матриця”: технологічна матриця, матриця попиту, матриця пропозиції та інші. У багатьох прикладних задачах доводиться зводити чис

Дії над матрицями
Над матрицями, як і над числами, можна робити такі алгебраїчні дії, як додавання, множення матриць, множення матриці на число. Матриці можна також транспонувати. Означення.

Дії над матрицями
Над матрицями, як і над числами, можна робити такі алгебраїчні дії, як додавання, множення матриць, множення матриці на число. Матриці можна також транспонувати. Означення.

Властивості множення матриць
1. ; 3. ; 2.

Визначники квадратних матриць
Визначники матриць часто вживаються при розв’язанні задач у багатьох розділах вищої математики, наприклад, в лінійній алгебрі при розв’язанні систем лінійних рівнянь, в аналітичній геометрії при об

Деякі правила обчислення визначників
1. Правило трикутника. Наведене правило обчислення визначників третього порядку (1.2.3) називається правилом трикутника. Його можна представити наступною схемою:

Розв’язання
а) ; б)

Ранг матриці
Розглянемо матрицю розмірності (1.1.1). Якщо в цій матриці викреслити довільно

Методи обчислення рангу матриці
Метод обвідних мінорів.Ранг матриці визначається в наступній послідовності: 1. Якщо серед елементів матриці є хоча б один відмінний від нуля елемент, то знаходимо нену

Обернена матриця
Означення. Матриця називається оберненою для квадратної матриці

Матричні рівняння.
Означення.Матричними рівняннями називаються рівняння виду: , або

Системи лінійних алгебраїчних рівнянь
Означення.Рівняння відносно невідомих називається лінійним, якщо його можна записати у вигляді:

Розв’язання
Виключимо невідому із усіх рівнянь, крім першого. Для цього помножимо перше рівняння на 3 і віднімемо отримане рівняння від другого; потім п

Технологічна матриця
Нехай підприємство, що має видів ресурсів виготовляє з них видів продукції. Припуст

Скалярний, векторний, змішаний добутки векторів, їх властивості та вираз через координати
Означення. Радіус-вектором точкиназивається вектор

Основні лінійні операції над векторами.
1. Якщо вектор помножити на число , то отримаємо вектор

Рівняння прямої на площині
Рівняння прямої з кутовим коефіцієнтом – це рівняння виду , (1.9.1) де

Рівняння прямої у відрізках
, (1.9.5) де – величина відрізка, що відсікається прямою від осі

Умова перпендикулярності прямих заданих в загальному вигляді
або . (1.9.11) Відстань

Рівняння площини і прямої в просторі
Параметричне рівняння прямої в просторі, що проходить через точку і має напрямний вектор

Загальне рівняння площини в просторі
, (1.10.4) де , якщо площина проходить через точку

Умова паралельності площин
. (1.10.12) Якщо площини не паралельні, то вони перетинаються, їх перетином буде пряма. Приклад 1.10.4.В

Поняття границі послідовності і границі функції, властивості
Означення. Нехай кожному поставлено у відповідність деяке дійсне число

Поняття границі послідовності і границі функції, властивості
Означення. Нехай кожному поставлено у відповідність деяке дійсне число

Поняття похідної, її властивості
Означення. Нехай задана на інтервалі . Візьмемо деяку точку

Похідні вищих порядків
Означення. Нехай функція задана на і у кожній точці

Диференціювання деяких функцій
Диференціювання неявних функцій. Нехай рівняння визначає

Практичне знаходження проміжків монотонності функції
Нехай функція задана на . Відмітимо на

Розв’язання.
Знаходимо першу похідну функції: .    

Екстремуми функції
Означення. Точка називається точкою максимуму (мінімуму) функції

Приклад 1.13.4.Знайти інтервали опуклості, увігнутості і точки перегину графіка функції.
Розв’язання. Знайдемо першу і другу похідні функції: ;

Асимптоти графіка функції
Означення. Асимптотою графіка функції називається пряма, що має таку властивість: відстань від точки

Невизначений інтеграл, властивості
Означення. Функція називається первісноюфункцією для функції

Властивості невизначеного інтеграла
1. Похідна від невизначеного інтеграла дорівнює підінтегральній функції, тобто: . Диференціал невизначеного інтеграла дор

Таблиця інтегралів від основних елементарних функцій
; ;

Визначений інтеграл, властивості
Якщо – первісна функція від , тобто

Основні методи інтегрування
Основними методами інтегрування є безпосереднє інтегрування за допомогою основних властивостей невизначеного і визначеного інтеграла і таблиці інтегралів, метод підстановки (заміни змінної) і інтег

Розв’язання.
а) Позначимо , тоді й, отже,

Метод невизначених коефіцієнтів
Через те, що інтегрування багаточлена не представляє труднощів, то досить навчитися інтегрувати правильні раціональні дроби. Сформульована нижче теорема дозволяє звести інтегрування будь-якого прав

Розв’язання.
а)Розкладемо підінтегральний вираз за схемою (2.4.2) з невизначеними коефіцієнтами . Звідси:

Невласні інтеграли
Розрізняють невласні інтеграли I– го і II– го роду. Невласними інтегралами I– го роду називаються інтеграли з нескінченним інтервалом інтегрування

Диференціальні рівняння першого порядку
Означення. Звичайним диференціальним рівнянням називається рівняння, що зв'язує шукану функцію однієї змінної і похідні різних порядків даної функції. У загальному

Однорідні і лінійні диференціальні рівняння першого порядку
Означення.Диференціальне рівняння першого порядку називається однорідним, якщо воно може бути представлене у вигляді:

Диференціальні рівняння другого порядку з постійними коефіцієнтами
Лінійне диференціальне рівняння другого порядку із сталими коефіцієнтами має вигляд: (2.9.1) де

Ознака Даламбера
Якщо в ряді з додатними членами відношення -го члена до

Радикальна ознака Коші
Якщо для ряду з додатними членами: , величина при

Інтегральна ознака збіжності ряду
Нехай члени ряду додатні і не зростають, а – така неперервна не зростаюча функція

Порівняння рядів з додатними членами
Нехай задані два ряди з додатними членами: (2.11.1) (2.11.2)

Степеневі ряди. Інтервал збіжності
Означення.Степеневим рядом називають ряд виду: , де

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги