Реферат Курсовая Конспект
Закон сохранения момента импульса - раздел Физика, Механика жидкости и газа Закон Сохранения Момента Импульса. Если Понятие Импульса В Классической Механ...
|
Закон сохранения момента импульса. Если понятие импульса в классической механике характеризует поступательное движение тел, момент импульса вводится для характеристики вращения и является следствием утверждения о том, что свойства окружающего мира не изменяются при поворотах (или повороте системы отсчета) в пространстве. В случае неравенства нулю момента силы наблюдается весьма "необычное" с точки зрения "здравого смысла" поведение быстро вращающихся тел (их момент импульса направлен по оси вращения) с помещенной на острие осью вращения.
Такие тела под действием внешних сил (например, силы тяжести) вместо того, чтобы перемещаться в сторону действия силы, начинают медленно вращаться вокруг острия в перпендикулярной приложенной силе плоскости. Несмотря на то, что подобное поведение является непосредственным следствием законов Ньютона (или еще более общих законов сохранения и симметрии), этот эффект часто не только вызывает удивление у лиц, мало знакомых с точными науками, но и дает им повод рассуждать об " ошибочности современного естествознания вообще и классической физики в частности.
Основанный на принципе " если я не понимаю теории или наблюдаемого эффекта, то тем хуже для них ", к сожалению до сих пор все еще популярен, хотя уже на протяжении нескольких столетий развивающееся естествознание демонстрирует его весьма низкую эвристическую эффективность. Закон сохранения энергии. Первоначально в механике были введены кинетическая энергия (обусловленная движением тела) и потенциальная (обусловленная взаимодействиями между телами и зависящая от их расположения в пространстве). Конкретное математическое выражение для потенциальной энергии определяется взаимодействиями между объектами.
В большинстве механических систем механическая энергия (сумма кинетической и потенциальной) сохраняется во времени (например в случае мяча, упруго ударяющегося о пол). Однако нередки и такие системы, в которых механическая энергия изменяется (чаще всего убывает). Для описания этого были введены диссипативные силы (например силы вязкого и сухого трения и др.). Со временем выяснилось, что диссипативные силы описывают не исчезновение или возникновение механической энергии, а переходы ее в другие формы (тепловую, электромагнитную, энергию связи и т.д.). История развития естествознания знает несколько примеров того, как кажущееся нарушение закона сохранения энергии стимулировало поиск ранее неизвестных каналов ее преобразования, что в результате приводило к открытию ее новых форм (так, например, "безвозвратная" потеря энергии в некоторых реакциях с участием элементарных частиц послужила указанием на существование еще одной неизвестной ранее элементарной частицы, впоследствии получившей название нейтрино). Закон сохранения энергии имеет большое практическое значение, поскольку существенно ограничивает число возможных каналов эволюции системы без ее детального анализа. Так на основании этого закона оказывается возможным априорно отвергнуть любой весьма проект весьма экономически привлекательного вечного двигателя первого рода (устройства, способного совершать работу, превосходящую необходимые для его функционирования затраты энергии). В основе закона сохранения энергии лежит однородность времени, т.е. равнозначность всех моментов времени, заключающаяся в том, что замена момента времени t1 моментом времени t2 без изменения значений координат и скоростей тел не изменяет механических свойств системы.
Поведение системы, начиная с момента t2, будет таким же, каким оно было бы, начиная с момента t1. Закон сохранения энергии имеет всеобщий характер.
Он применим ко всем без исключения процессам, происходящим в природе.
Полное количество энергии в изолированной системе тел и полей всегда остается постоянным; энергия лишь может переходить из одной формы в другую. Этот факт является проявлением неуничтожаемости материи и ее движения.
Причиной изменения скорости тела всегда является его взаимодействие с другими телами.
При взаимодействии двух тел всегда изменяются скорости, т.е. приобретаются ускорения. Отношение ускорений двух тел одинаково при любых взаимодействиях. Свойство тела, от которого зависит его ускорение при взаимодействии с другими телами, называется инертностью. Количественной мерой инертности является масса тела. Отношение масс взаимодействующих тел равно обратному отношению модулей ускорений. Второй закон Ньютона устанавливает связь между кинематической характеристикой движения – ускорением, и динамическими характеристиками взаимодействия – силами. , или, в более точном виде, , т.е. скорость изменения импульса материальной точки равна действующей на него силе. При одновременном действии на одно тело нескольких сил тело движется с ускорением, являющимся векторной суммой ускорений, которые возникли бы при воздействии каждой из этих сил в отдельности.
Действующие на тело силы, приложенные к одной точке, складываются по правилу сложения векторов.
Это положение называют принципом независимости действия сил. Центром масс называется такая точка твердого тела или системы твердых тел, которая движется так же, как и материальная точка массой, равной сумме масс всей системы в целом, на которую действуют та же результирующая сила, что и на тело. . Проинтегрировав это выражение по времени, можно получить выражения для координат центра масс. Центр тяжести – точка приложения равнодействующей всех сил тяжести, действующих на частицы этого тела при любом положении в пространстве.
Если линейные размеры тела малы по сравнению с размером Земли, то центр масс совпадает с центром тяжести. Сумма моментов всех сил элементарных тяжести относительно любой оси, проходящей через центр тяжести, равна нулю. Потенциальная энергия характеризует взаимодействующие тела, кинетическая – движущиеся. И та, и другая возникают в результате взаимодействия тел. Если несколько тел взаимодействую между собой только силами тяготения и силами упругости, и никакие внешние силы на них не действуют (или же их равнодействующая равна нулю), то при любых взаимодействиях тел работа сил упругости или сил тяготения равна изменению потенциальной энергии, взятой с противоположным знаком.
В то же время, по теореме о кинетической энергии (изменение кинетической энергии тела равно работе внешних сил) работа тех же сил равна изменению кинетической энергии. . Из этого равенства следует, что сумма кинетической и потенциальной энергий тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и упругости, остается постоянной.
Сумма кинетической и потенциальной энергий тел называется полной механической энергией. Полная механическая энергия замкнутой системы тел, взаимодействующих между собой силами тяготения и упругости, остается неизменной. Работа сил тяготения и упругости равна, с одной стороны, увеличению кинетической энергии, а с другой – уменьшению потенциальной, то есть работа равна энергии, превратившейся из одного вида в другой.
– Конец работы –
Эта тема принадлежит разделу:
Два физических подхода – макроскопический (термодинамический) и микроскопический (молекулярно-кинетический) – дополнили друг друга. Идея о том, что вещество состоит из молекул, а те, в свою очередь, из атомов… Казалось, на основе кинетической теории, легко можно определить свойства газов, поскольку достаточно знать свойства…
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Закон сохранения момента импульса
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Твитнуть |
Новости и инфо для студентов