рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Исследование цепи переменного тока

Исследование цепи переменного тока - раздел Физика, Задание 1 Исследование Статических И Динамических Характеристик В Одн...

Задание 1 Исследование статических и динамических характеристик в одномассовой электромеханической системе с двигателем постоянного тока независимого возбуждения Двигатель постоянного тока независимого возбуждения подключен по схеме, приведенной на рис. 1. Рис. 1 Вышеприведенная система математически описывается системой дифференциальных уравнений: где Uя, Uв, – напряжение на обмотке якоря и возбуждения (ОВД), iя, iв , – ток якоря и обмотки возбуждения, R я , Rв – сопротивление якоря и обмотки возбуждения, L я, Lв – индуктивность якоря и обмотки возбуждения, Ф – магнитный поток обмотки возбуждения, K – конструктивный коэффициент, М – электромагнитный момент двигателя, Мс - момент статического сопротивления двигателя, J - момент инерции двигателя, По приведенным уравнениям составим математическую модель двигателя постоянного тока независимого возбуждения ( рис. 2). Рис. 2 Исходные данные для двигателя П 61 мощности PН = 11 кВт: номинальное напряжение питания Uн =220 В, номинальная скорость вращения n = 1500 об/мин, номинальный ток в цепи якоря Iя. н. = 59,5 А, сопротивление цепи якоря RЯ = 0,187 Ом, сопротивление обмотки возбуждения RВ = 133 Ом, число активных проводников якоря N = 496, число параллельных ветвей якоря 2a = 2, число витков полюса обмотки возбуждения wв =1800, полезный магнитный поток одного полюса Ф = 8,2 мВб, номинальный ток возбуждения обмотки возбуждения IВ. Н. = 1,25 А, максимальная допускаемая частота вращения 2250 об/мин, момент инерции якоря J1= 0,56 кгм2, двигатель двухполюсный 2Pn=2, масса двигателя Q = 131 кг. Произведем необходимые расчеты. 1. Угловая скорость 2. Конструктивный коэффициент двигателя 3. Постоянная времени цепи возбуждения 4. Постоянная времени цепи якоря 5. Коэффициент Кф Все полученные данные подставляем в структурную схему (рис. 2) и проведем ее моделирование с помощью программного пакета Matlab.

Величины Uя= Uв= Uс подаются на входы схемы ступенчатым воздействием. На выходе снимаем значение скорости вращения двигателя 1. Динамическая характеристика двигателя (график изменения скорости 1(t) при номинальных параметрах и Мс=0) изображена на рис. 3. График показывает выход скорости на установившееся значение при включении двигателя. График изменения скорости КФ(t) приведен на рис. 4. Рис. 3 – Переходная характеристика для одномассовой системы в режиме холостого хода. Рис. 4 – Процесс изменения КФ(t). Из графика находим: Расчетное значение: Как мы видим, расчетное значение значительно отличается от значения, полученного экспериментально при моделировании системы.

Это объясняется тем, что расчеты мы выполняли по эмпирическим формулам и не учли все параметры модели.

Однако для нас наиболее важно получить качественные характеристики, а не количественные.

А это наша модель позволяет сделать. Статическая характеристика двигателя – это изменение установившейся скорости вращения двигателя 1 при изменении тока якоря Iя (электромеханическая характеристика) или нагрузки Мс (механическая характеристика). Для получения электромеханической характеристики последовательно изменяют Ic=0, Iн А и снимают установившееся значение скорости 1. По полученным значениям строят график.

Таким образом получают естественную электромеханическую характеристику. Искусственные электромеханические характеристики получают при изменении Uc, Rя и Ф. Зависимость 1 от этих величин описывается формулой: Итак, значение 1 при Ic=0, нами уже получено ранее (см. рис. 3). Теперь мы изменяем значение Ic, которое становится равным Iн=59,5 А и получаем переходный процесс (см. рис. 5). Рис. 5 Из графика находим: Расчетное значение . Естественная электромеханическая характеристика приведена на рис. 6. Рис. 6 Для получения механической характеристики последовательно изменяют Мс=0, Мн Нм и снимают установившееся значение скорости 1. По полученным значениям строят график.

Таким образом получают естественную механическую характеристику.

Искусственные механические характеристики получают при изменении Uc, Rя и Ф. Зависимость 1 от этих величин описывается формулой: . Итак, значение 1 при Мс=0, нами уже получено ранее (см. рис. 3). Теперь мы изменяем значение Мс, которое становится равным Мн=КФIн. Получаем переходный процесс (см. рис. 7). Рис. 7 Из графика находим: Расчетное значение Естественная механическая характеристика приведена на рис. 8. Перейдем к построению искусственных характеристик. 1. Искусственные электромеханические характеристики при изменении Uя. Рис. 9 Uя=200В, щхх=308,97 с-1, щ=291,78 с-1 Uя=180В, щхх=278,07 с-1, щ=260,89 с-2. Искусственные электромеханические характеристики при изменении Rя. Рис. 10 Rя=0,287 Ом, щхх=339,87 с-1, щ=313,49 с-1 Rя=0,387 Ом, щхх=339,87 с-1, щ=304,297 с-3. Искусственные электромеханические характеристики при изменении Ф. Рис. 11 Ф=0,0182 Вб, щхх=153,13 с-1, щ=145,39 с-1 Ф=0,0282 Вб, щхх=98,83 с-1, щ=93,83 с-4. Искусственные механические характеристики при изменении Uя. Uя=200 В, щхх=308,97 с-1, щ=291,78 с-1 Uя=180 В, щхх=278,07 с-1, щ=162,81 с-5. Искусственные механические характеристики при изменении Rя. Рис. 13 Rя=0,287 Ом, щхх=339,87 с-1, щ=313,49 с-1 Rя=0,387 Ом, щхх=339,87 с-1, щ=304,3 с-6. Искусственные механические характеристики при изменении Ф. Рис. 14 Ф=0,0182 Вб, щхх=153,13 с-1, щ=149,66 с-1 Ф=0,0282 Вб, щхх=98,83 с-1, щ=97,38 с-1 Выводы: при уменьшении напряжения якоря установившееся значение угловой скорости уменьшается. При увеличении дополнительного сопротивления якоря значение угловой скорости остается прежним при холостом ходе и уменьшается при механических и электрических воздействиях.

При увеличении магнитного потока значение угловой скорости уменьшается.

Задание 2 Исследование характеристик двигателя постоянного тока независимого возбуждения в двухмассовой упругой системе В двухмассовой системе двигатель подключается к нагрузке через упругое звено.

Структурная схема такого включения изображена на рис. 15. Рис. 15 – Структурная схема двухмассовой упругой электромеханической системы Здесь используются следующие обозначения: М – электромагнитный момент двигателя, Мс1 - момент статического сопротивления двигателя, Мс2 - момент статического сопротивления нагрузки, М12 - момент сопротивления упругой связи, С12 – коэффициент жесткости упругой связи, – скорость вращения вала двигателя, – скорость вращения рабочего органа, J 1 - момент инерции двигателя, J 2 - момент инерции рабочего органа.

Для случая упругой связи в структурную схему математической модели (рис. 2) необходимо добавить соответствующие элементы.

Полученная схема изображена на рис. 16. С помощью данной схемы смоделируем поведение двухмассовой упругой электромеханической системы с двигателем постоянного тока независимого возбуждения.

На входы схемы Мс1 и Мс2 подаем значения Мс1 = Мс2 = 0. Остальные параметры – номинальные.

С выхода схемы снимаем переходную характеристику угловой скорости вращения рабочего органа и вала двигателя . Исследуем переходные процессы (t) и (t), изменяя моменты инерции двигателя и рабочего органа.

Рис. 16 – Структурная схема для моделирования двухмассовой упругой системы с двигателем постоянного тока независимого возбуждения Примем &#61546;1-&#61546;2=1&#61616 ;, тогда коэффициент жесткости 1. Пусть J1=J2=0.56 кг&#61655;м2 Рис. 17 – Переходные процессы (t) и (t) 2. Примем J1>J2 (0.84>0.56) Рис. 18 – Переходные процессы (t) и (t) 3. Примем J1<J2 (0.56<0.84) Рис. 19 - Переходные процессы (t) и (t) Вывод: при увеличении момента инерции механизма время регулирования уменьшается, а при уменьшении – увеличивается.

– Конец работы –

Используемые теги: исследование, цепи, переменного, тока0.074

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Исследование цепи переменного тока

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Анализ сложных электрических цепей постоянного тока и однофазного переменного тока

Исследование магнитной цепи на постоянном токе
В результате этихисследований были проверены основные законы магнитной цепи. Исследованиеосновных законов магнитной цепи сводится к сопоставлению… Эти величины приведены в таблице 1.1. По этой таблице построеныграфики,…

Лекция №1 Линейные цепи постоянного тока Элементы электрических цепей и Схемы их замещения
Линейные цепи постоянного тока... Элементы электрических цепей и Схемы их... Эквивалентные преобразования в Электрических цепях Ветвь может...

Нелинейные цепи переменного тока в стационарных режимах
Нелинейные цепи переменного тока в стационарных режимах... Особенности нелинейных цепей при переменных... Графические методы расчета...

ИССЛЕДОВАНИЕ ЛИНЕЙНОЙ ОДНОФАЗНОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА ПРИ ПОСЛЕДОВАТЕЛЬНОМ И ПАРАЛЛЕЛЬНОМ СОЕДИНЕНИИ ИНДУКТИВНОЙ КАТУШКИ И КОНДЕНСАТОРА
Цель работы Исследование явлений резонанса напряжений и резонанса токов... Краткие Теоретические... Порядок выполнения работы Опыт Исследование резонанса...

Расчет цепей переменного тока с последовательным соединением элементов
Электрические цепи переменного тока... Расчет цепей переменного тока с последовательным соединением... Расчет цепей переменного тока при параллельном соединении...

Расчет линейных электрических цепей переменного синусоидального тока
На сайте allrefs.net читайте: "Расчет линейных электрических цепей переменного синусоидального тока"...

Лекция 7. Общие сведения о трехфазных линейных электрических цепях а передача энергии на дальние расстояния трехфазным током экономически более выгодна, чем переменным током с иным числом фаз
ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ... Лекция Общие сведения о трехфазных линейных электрических... В современных энергетических системах генерирование и передача больших потоков энергии осуществляется трехфазными...

Электрические цепи постоянного тока
Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, в противном случае —… Нелинейная электрическая цепь — цепь, содержащая хотя бы один нелинейный… Количество ветвей в электрической схеме принято обозначать буквой «p». Узел — место соединения трех и более ветвей.…

Расчет электрической цепи постоянного тока
Записать по схеме уравнение Кирхгофа. Определить токи во всех ветвях цепи методом узловых потенциалов.Определить… Рассчитать потенциалы в точках соединения элементов внешнего контура и построить потенциальную диаграмму.Методом…

0.038
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам