рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Упрощенная структура фотодиода и его ус­ловное графическое обозначение

Упрощенная структура фотодиода и его ус­ловное графическое обозначение - раздел Физика, Свойства пластически деформированных металлов   Генерация Пар Электрон-Дырка Приводит К Увеличению Обратного ...

 

Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения между анодом и катодом при разомкнутой цепи.

Фотодиоды удобно ха­рактеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).

Обратимся к вольт-амперным характеристикам (ВАХ) фотодиода. Пусть вначале световой поток ра­вен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область р-n-перехода, вызывают генерацию пар электрон-дырка. Под действием электри­ческого поля р-n-перехода носители электрода движутся к электродам. В результате между электродами воз­никает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребля­ет, а вырабатывает энергию.

 

 

В настоящее время коэффициент полезно­го действия солнечных элементов достигает 20%. Пока энергия, вырабатываемая солнечными элементами, при­мерно в 50 раз дороже энергии, получаемой из угля, не­фти или урана. Но ожидается, что стоимость энергии, получаемой с помощью солнечных батарей, будет сни­жаться.

 

Фотодиоды являются более быстродействующими при­борами по сравнению с фоторезисторами. Они работают на частотах 107—1010 Гц. Фотодиод часто используется в оптопарах светодиод-фотодиод.

 

Термоэлектрогенераторы и термоэлектрохолодильники

Рассмотрим цепь из p-n-полупроводников. Пусть левые концы образцов n- и p-полупроводника находятся при температуре более высокой, чем правые. В горячей области образуются в большей концентрации электроны и дыр­ки. Путем диффузии они стремятся распространиться по всему объему. В результате горячая часть n-полупроводника зарядит­ся положительно (частично ушли возбужденные электроны), а холодная - отрицательно; в р-полупроводнике горячая часть зарядится отрицательно (частично ушли возникшие дырки), а холодная — положительно.

 

 

В цепи, соединенной последовательно из разных материалов, появляется э. д. с., если места контактов поддерживаются при разных температурах. В этом сущность термоэлектрического эффекта Зеебека, используемого в термоэлектрогене­раторах (ТЭГ). При появлении тока в цепи, состоящей из раз­личных проводников, в местах контакта в дополне­ние к теплоте Джоуля выделяется или поглощается в зависимо­сти от направления тока некоторое количество тепла, пропорциональное прошедшему через контакт количеству электри­чества:

Термоэлектрогенераторы применяют для питания радиоаппа­ратуры. Так же как и термопарный эффект, эффект Пельтье в p-n-переходах проявляется более энергично, чем в металли­ческих парах. Если в лучших устройствах из металлических пар на контактах удавалось получать перепад темпера­тур 3—5° С, то в батареях из полупроводниковых p-n-элементов удается его довести до 60—70° С. Эффект используется для охлаждения радиоаппаратуры и ее термостатирования.

Полупроводниковые термостаты применяют для стабилиза­ции температуры работы пьезокварцев и многих полупроводни­ковых радио- и вычислительных схем; холодильники - для по­вышения чувствительности схем с фоторезисторами.

 

Эффект Холла

Предположим, что по пластине проводника, имею­щей ширину a и толщину b, течет ток плотностью i. Выбе­рем на боковых сторонах пластины точки C и D, разность потенциалов между которыми равна нулю. Если эту пластину поместить в магнит­ное поле с индукцией B, то между точками C и D возникает разность потенциалов VХ, называемая э. д. с. Холла. В не слишком сильных полях

Vx = rh Bai

 

Коэффициент пропорциональности rh называют постоянной Холла. Она имеет размерность L3/Q (L — длина, Q — электрический заряд) и измеряется в кубических метрах на кулон, (м3/Кл). Рассмотрим физическую природу эффекта Холла.

На электрон, движущийся справа налево со скоростью v, действует сила Лоренца Fл: Fл = qvB

 

 

Под действием силы Лоренца электроны отклоняются к внешней грани пластины, заряжая ее отрицательно. На противоположной грани накапливаются нескомненсированные положительные заряды. Это приводит к возникновению электрического поля, направленного от C к D. Поле EХ действует на электроны с силой f = qEx, направленной против силы Лоренца. При f — Fл поперечное электрическое поле уравновешивает силу Лоренца и дальнейшее накопление электрических зарядов на боковых гранях пластины прекращается.

 

Эффект Холла получил наи­более широкое практическое применение из всех гальваномагнитных явлений. По­мимо исследования электрических свойств материалов он послужил основой для устройства большого класса приборов: магнитометров, преобразователей постоянного тока в переменный и переменного в по­стоянный, усилителей постоянного и переменного тока, генерато­ров сигналов переменного тока, фазометров, микрофонов и т. д.

 

Полупроводниковые лазеры (КПД > 90%)

В последние годы интенсивно разви­ваются работы по созданию полупроводниковых источников когерент­ного излучения — полупроводниковых лазеров, которые открывают возможность непосредственного преобразования энергии электриче­ского тока в энергию когерентного излучения.

 


На рис. а сплошной линией показана кривая распределения электронов, отвечающая равновесному состоянию, пунктиром — неравновесному состоянию, при котором концентрация электронов в зоне проводимости и дырок в валентной зоне выше равновесной. За­полнение зон электронами, соответствующее такому инверсионному состоянию, показано на рис. б. Особенность его заключена в том, что кванты света с энергией, равной ширине запрещенной зо­ны, поглощаться системой не могут. Поглощение та­кого кванта должно сопровождаться переводом электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости. Так как на верхнем уровне валентной зоны электронов практически нет, а на нижнем уровне зоны проводимости нет свободных мест, то вероят­ность подобного процесса весьма низка. Это создает благоприятные условия для протекания стимулированного излучения и нарастания фотонной лавины. Квант света стимулирует рекомби­нацию электрона и дырки (n-переход), сопровождающуюся рождением точно такого же кванта. Так как эти кванты практически не погло­щаются системой, то в дальнейшем они оба участвуют в возбуждении стимулированного излучения, порождая два новых кванта, и т. д. Для того чтобы заставить один и тот же фотон участвовать в возбуждении стимулированного излучения многократно, на противоположных стен­ках рабочего тела лазера помещают строго параллельные одно другому зеркала (рис. в), которые отражают падающие на них фото­ны и возвращают их в рабочий объем лазера. Усилению подвергаются только те фотоны, ко­торые движутся практически строго вдоль оси, так как только эти фотоны испытывают многократные отражения от зеркал. Все другие фотоны выбывают из рабочего объема либо сразу, либо после незначительного числа отражений. В результате возникает остронаправленное излучение вдоль оси, характеризующееся вы­сокой степенью монохроматичности.

Полупроводниковые лазеры обладают высоким к. п. д., который приближается к 100%. Другим замечательным свойством полупроводниковых лазеров является возможность прямой модуляции когерентного излучения изменением тока, текущего через p-n-переход. Это позволяет при­менять полупроводниковые лазеры для целей связи и телевидения.

 

Тензорезисторы

Ряд полупроводниковых материалов достаточно резко изме­няет свое электросопротивление под влиянием механических на­пряжений. Этот эффект называется тензорезистивным, а материалы, в которых он имеет место, — тензорезисторами. Природа тензорезистивного эффекта у разных полупроводников может быть различной. У порошковых композиций, например у авиационных угольных регуляторов напряжения и в угольных микрофонах, она обусловливается преимущественно изменени­ем электросопротивления за счет изменения площади и качества поверхности контактов; в однородных монокристаллах — изме­нением ширины валентной зоны и анизотропии эффективных масс электронов при деформировании; в монокристаллах с p-n-переходами - за счет изменений ширины перехода и по­тенциалов на нем.

В простейшем случае этот эффект оценивается коэффициен­том тензочувствительности по напряжению:

характеризующему относительное изменение электросопротив­ления ΔR/R0, приходящееся на единицу приложенного напряже­ния σ, или коэффициентом тензочувствительности по деформа­ции:

 

 

где ΔR – изменение сопротивления; σ – механическое напряжение; π – коэффициент тензочувствительности по напряжению; ε – механическая деформация; K – коэффициент тензочувствительности по деформации.

 

Лекция 3

– Конец работы –

Эта тема принадлежит разделу:

Свойства пластически деформированных металлов

На сайте allrefs.net читайте: "Свойства пластически деформированных металлов"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Упрощенная структура фотодиода и его ус­ловное графическое обозначение

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лазарев Д. В.
  Уфа 2004 Оглавление Лекция 1_ 4 Заполнение зон электронами. Проводники, диэлектрики и полупроводники_ 4

Заполнение зон электронами. Проводники, диэлектрики и полупроводники
Каждая энергетическая зона содержит ограниченное число энер­гетических уровней. В соответствии с принципом Паули на каждом уровне может разместиться не более двух электронов. При ограничен­ном числ

Принципы работы полупроводниковых приборов и их применение
Диоды В пластине полупроводника, на границе между двумя слоями с различного рода электропроводностями, образуется электронно-дырочный переход, называе­мый также p-n

Люкс-амперная характери­стика фоторезистора
Фотоэлементы с p-n-переходом При освещении p-n-перехода в нем возникает э. д. с. Это явление исполь­зуется в фотоэлементах с запирающим слоем, которые могут служить

Механические свойства материалов
  Из всех свойств, которыми обладают твердые тела, наиболее харак­терными являются механические свойства — прочность, твердость, пластичность, износостойкость и др. Именно благодаря э

Кривые растяжения материалов: а-хрупкого, б-пластичного
    По-разному

Твёрдость материала по Бринелю рассчитывают исходя из площади отпечатка.
   

Кристаллизация металлов
  Переход металла из жидкого или па­рообразного состояния в твердое с образованием кристаллической струк­туры называется первичной кристалли­зацией. Образование новых кристаллов в тве

Изменение термодинамического по­тенциала в зависимости от температуры для металла в твердом и жидком состояниях
  Температура, при которой термодина­мические потенциалы вещества в твер­дом и жидком состояниях равны, назы­вается равновесной температурой кри­сталлизации. Кристаллизация происхо­ди

Кривые охлаждения металла
  При боль­шом объеме жидкого металла выделяю­щаяся при кристаллизации теплота повышает температуру практически до равновесной (кривая а); при малом объеме мет

Изменение термодинамического по­тенциала при образовании зародышей в за­висимости от их размера
  Если принять, что зародыш имеет форму куба с ребром А, то общее изме­нение термодинамического потенциала    

Изменение скорости образования зародышей (с. з.) и скорости роста кристаллов (с. р.) в зависимости от степени переохлаждения
  Для металлов, которые в обычных ус­ловиях кристаллизации не склонны к большим переохлаждениям, как пра­вило, характерны восходящие ветви кривых. Это значит, что при равновес­ной тем

Схемы установок для выращивания монокристаллов
  Метод Чохральского (рис. б) состоит в вытягивании монокристалла из расплава. Для этого используется готовая затравка 2 - небольшой образец, вырезанный из моно­кристалла по возможнос

Термодинамическое обоснование диаграммы состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях
    Полиморфизм Ряду веществ

Влияние нагрева на структуру и свойства металлов
  Процессы, происходящие при нагреве, подразделяют на две основные стадии: возврат и рекристаллизацию; обе ста­дии сопровождаются выделением теп­лоты и уменьшением свободной энер­гии.

Схемы изменения твердости (а) и пластичности (6) наклепанного металла при нагреве: I - возврат; II - первичная рекристаллизация; III - рост зерна
    Рассмотренная стадия рекристаллиза­ции называется первичной рекристалли­зацией или рекристаллизацией обработ­ки. Первичная рекристаллизация з

Термическая обработка металлов и сплавов
Определения и классификация Термической обработкой называют технологические процессы, состоящие из нагрева и охлаждения металлических изделий с целью изменения их с

Термохимическая обработка
Назначение и виды химико-термической обработки Химико-термической обработкой называ­ется процесс поверхностного насыщения стали различ­ными элементами путем их дифф

Цементация в твердой среде
Карбюриза­тором является активированный древесный уголь (дубо­вый или березовый), а также каменноугольный полукокс и торфяной кокс. Для ускорения процесса к древесному углю добавляют активизаторы —

Газовая цементация
В настоящее время газовая цементация является основным процессом це­ментации на заводах массового производства. При газо­вой цементации сокращается длительность процесса, так как отпадает необходим

Центробежный шариковый наклёп
    Накатывание стальных шариков

Способы литья
Литье в землю Недостатки этого метода заключаются в том, что поверхность детали получается шероховатой, охлаждение детали происходит очень медленно, то есть произво

Снижение себестоимости
Перечисленные выше преимущества литья в кокиль приводят к снижению себестоимости отливок из цветных сплавов. Кроме того, при литье в кокиль облегчается очистка и обрубка литья, значительно

Высокая прочность
Благодаря быстрому охлаждению отливки приоб­ретают мелкозернистую структуру и повышенную прочность. Чем меньше толщина стенки отливки, тем больше ее прочность.   По сравнению

Конструкционные материалы
Общие требования, предъявляемые к конструкционным материалам Конструкционными называют мате­риалы, предназначенные для изготовления деталей машин, приборов, инже­не

Компоненты и фазы в сплавах железа с углеродом
Железо и углерод — эле­менты полиморфные. Железо с температурой плавления 1539°С имеет две модификации - α и γ. Модификация Feα, существует при тем­пературах до 911°С и от

Влияние легирующих элементов на ме­ханические свойства сталей
Легирую­щие элементы вводят для повышения конструкционной прочности стали. Легированные стали производят каче­ственными, высококачественными или особовысококачественными. Их приме­няют после закалк

Цветные сплавы
Медные сплавы Свойства меди. Медь металл красновато-розового цвета; кристаллическая ГЦК решетка, поли­морфных превращений нет. Медь менее тугоп

Свойства промышленных латуней, обрабатываемых давлением
Латунь Массовая доля, % σв σ0,2 δ,% HB Cu

Механические свойства алюминия
Марка Сумма примесей, %   Состояние σв σ0,2 δ,%   &nb

Механические свойства иодидного и технического титана
Титан Сумма примесей, % σв σ0,2 δ Ψ HB

Органические полимеры
  Органическими называют обширный класс веществ, содер­жащих в своей основе углерод. Кроме углерода в этих вещест­вах содержится обычно водород, кислород, азот, сера, фосфор. Соединен

Неорганические материалы
  К неорганическим полимерным материалам относятся минераль­ное стекло, ситаллы, керамика и др. Этим материалам присущи негорючесть, высокая стойкость к нагреву, химическая сто

Кристаллическая решет­ка графита
  В узлах каждой ячейки располагаются атомы углерода. Межатомное расстояние равно 0,143 нм. Между атомами действуют силы прочной ковалентной связи. Отдельные плоскости расположены на

Керамика на основе чистых оксидов
В производстве оксидной керамики используют в основном следующие оксиды: А12О3 (ко­рунд), ZrO2, AlgO, CaO, BeO. Структура керамики однофазная поликристаллическая. К

Бескислородная керамика
К тугоплавким бескислородным соединениям относятся соединения элементов с углеродом — карбиды, с бором — бориды, с азотом — нитриды, с кремнием — силициды и с серой — сульфиды. Эти соединения отлич

Композиционные материалы
Композиционные материалы с металлической матрицей Композиционные материалы состоят из металлической матрицы, упрочненной высокопрочными волокнами (волокнистые матер

Схемы армирования композиционных материалов: I - однонаправленная; II - двухнаправленная; III - трехнаправленная; IV - четырехнаправленная.
Укладка во­локон (1 - прямоугольная, 2 - гексаго­нальная, 3 - косоугольная, 4 - с искри­вленными волокнами, 5 - система из n ни­тей)   Карбоволокн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги