рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Некоторые более глубокие математические соображения

Некоторые более глубокие математические соображения - раздел Физика, Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления Для Того Чтобы Лучше Разобраться В Значении Гёделевского Доказательства, Поле...

Для того чтобы лучше разобраться в значении гёделевского доказательства, полезно будет вспомнить, с какой, собственно, целью оно было первоначально предпринято. На рубеже веков ученые, деятельность которых была связана с фундаментальны­ми математическими принципами, столкнулись с весьма серьез­ными проблемами. В конце XIX века — в значительной степени благодаря глубоко оригинальным математическим трудам Георга Кантора (с «диагональным доказательством» которого мы уже познакомились) — математики получили в распоряжение эф­фективные методы доказательства некоторых наиболее фундаментальных своих результатов, основанные на свойствах беско­нечных множеств. Однако с этими преимуществами оказались связаны и не менее фундаментальные трудности, проистекаю­щие из чересчур вольного обращения с концепцией бесконечно­го множества. Особо отметим парадокс Рассела (на который я вкратце ссылался в комментарии к Q9, см. также §3.4 — Кан­тор о нем также упоминает), обозначивший некоторые препят­ствия, подстерегающие склонных к опрометчивым умозаключе­ниям. Тем не менее, все понимали, что если вопрос о допустимо­сти тех или иных методов рассуждения продумать с достаточной тщательностью, то можно добиться очень и очень впечатляющих математических результатов. Проблема, по всей видимости, сво­дилась к отысканию способа, посредством которого можно было бы в каждом конкретном случае абсолютно точно определить, была ли соблюдена при выборе метода рассуждения «достаточ­ная тщательность».

Одной из главных фигур движения, поставившего перед со­бой цель достичь этой точности, был великий математик Давид Гильберт. Движение окрестили формализмом; в соответствии с его основополагающим принципом, следовало однозначно опре­делить все допустимые методы математического рассуждения в пределах той или иной конкретной области раз и навсегда, вклю­чая и те, что связаны с понятием бесконечного множества. Такая совокупность правил и математических утверждений называет­ся формальной системой. После того как определены правила формальной системы F, решение вопроса о корректности приме­нения этих правил — количество которых непременно является конечным — сводится к элементарной механической проверке. Разумеется, если мы хотим, чтобы любой выводимый с помощью таких правил результат мог считаться действительно истинным, нам придется присвоить им всем статус вполне допустимых и обоснованных форм математического рассуждения. Однако неко­торые из рассматриваемых правил могут подразумевать какие-либо манипуляции с бесконечными множествами, и в этом слу­чае математическая интуиция, подсказывающая нам, какие ме­тоды рассуждения допустимы, а какие нет, может оказаться и не достойной абсолютного доверия. Сомнения в этой связи как. нельзя более уместны, учитывая несоответствия, возникающие при столь вольном обращении с бесконечными множествами, что допустимым становится даже парадоксальное «множество всех множеств, не являющихся членами самих себя» Бертрана Рас­села. Правила системы F не должны допускать существования «множества» Рассела, но где же, в таком случае, следует про­вести границу? Вообще запретить применение бесконечных мно­жеств было бы слишком строгим ограничением (обычное евкли­дово пространство, например, содержит бесконечное множество точек, да и множество натуральных чисел является бесконеч­ным); кроме того, существуют же формальные системы, абсо­лютно в этом смысле удовлетворительные (поскольку в их рам­ках не допускается, к примеру, формулировать сущности, подоб­ные «множеству» Рассела), применяя которые можно получить большую часть необходимых математических результатов. Отку­да нам знать, каким из этих формальных систем можно верить, а каким нельзя?

Рассмотрим подробнее одну такую формальную систему F; для математических утверждений, которые можно получить с по­мощью правил системы F, введем обозначение ИСТИННЫЕ, а для утверждений, отрицания (т. е. утверждения, обратные рас­сматриваемым) которых выводятся из того же источника, — обо­значение ЛОЖНЫЕ. Любое утверждение, которое можно сфор­мулировать в рамках системы F, но которое не является в этом смысле ни истинным, ни ложным, будем полагать нераз­решимым. Кто-то, возможно, сочтет, что поскольку на деле может оказаться «бессмысленным» и само понятие бесконечного множества, то, по всей видимости, нельзя абсолютно осмысленно говорить ни об истинности, ни о ложности относящихся к ним утверждений. (Это мнение применимо, по крайней мере, к неко­торым разновидностям бесконечных множеств, если не ко всем.) Если придерживаться такой точки зрения, то нет особой разни­цы, какие именно утверждения о бесконечных множествах (неко­торых разновидностей) оказываются ИСТИННЫМИ, а какие — ЛОЖНЫМИ, лишь бы не вышло так, что одно утверждение по­лучится ИСТИННЫМ и ЛОЖНЫМ одновременно, т.е. система F должна все же быть непротиворечивой. Собственно говоря, в этом и состоит суть истинного формализма, а в отношении формальной системы F первостепенно важно знать лишь следующее: (а) является ли она непротиворечивой и (Ь) является ли она полной. Система F называется полной, если любое мате­матическое утверждение, должным образом сформулированное в рамках F, всегда оказывается либо истинным, либо ЛОЖНЫМ (т. е. НЕРАЗРЕШИМЫХ утверждений система F не содержит).

Для строгого формалиста вопрос о том, является ли то или иное утверждение о бесконечных множествах действительно истинным в сколько угодно абсолютном смысле, не обязательно имеет смысл и, уж конечно же, не имеет никакого существенно­го отношения к процедурам формалистской математики. Таким образом, поиски абсолютной математической истины в отноше­нии утверждений, связанных с упомянутыми бесконечными ве­личинами, заменяются стремлением продемонстрировать непро­тиворечивость и полноту соответствующих формальных систем. Какие же математические правила допустимо использовать для такой демонстрации? Достойные доверия, прежде всего, причем формулировка этих правил никоим образом не должна основы­ваться на сомнительных рассуждениях с привлечением слишком вольно определяемых бесконечных множеств (типа множества Рассела). Была надежда на то, что в рамках некоторых срав­нительно простых и очевидно обоснованных формальных систем (например, такой достаточно элементарной системы, как ариф­метика Пеано) отыщутся логические процедуры, которых будет достаточно для того, чтобы доказать непротиворечивость других, более сложных, формальных систем — скажем, системы F, — непротиворечивость которых уже не столь бесспорна и в рам­ках которых допускаются формальные рассуждения об очень «больших» бесконечных множествах. Если принять философию формалистов, то подобное доказательство непротиворечивости для F, как минимум, даст основание для использования мето­дов рассуждения, допустимых в рамках системы F. Затем можно доказывать математические теоремы, применяя концепцию бес­конечных множеств тем или иным непротиворечивым образом, а может, удастся и вовсе избавиться от необходимости отвечать на вопрос о реальном «смысле» таких множеств. Более того, если удастся показать, что система F является еще и полной, то мож­но будет вполне резонно счесть, что эта система действительно содержит абсолютно все допустимые математические процедуры; т. е. представляет собой, в некотором смысле, полное описание математического аппарата рассматриваемой области.

Однако в 1930 году (публикация состоялась в 1931) Гёдель взорвал свою «бомбу», раз и навсегда показав, что мечта форма­листов принципиально недостижима. Он продемонстрировал, что не может существовать формальной системы F, которая была бы одновременно и непротиворечивой (в некоем «сильном» смысле, который мы рассмотрим в следующем разделе), и полной, — при условии, что F считается достаточно мощной, чтобы сочетать в себе формулировки утверждений обычной арифметики и стан­дартную логику. Таким образом, теорема Гёделя справедлива для таких систем F, в рамках которых арифметические утверждения типа теоремы Лагранжа и гипотезы Гольдбаха (см. §2.3) форму­лируются как утверждения математические.

В дальнейшем мы будем рассматривать только те формаль­ные системы, которые являются достаточно обширными, чтобы содержать в себе необходимые для действительной формулиров­ки теоремы Гёделя арифметические операции (а также, в случае нужды, и операции какой угодно машины Тьюринга; см. ниже). Говоря о какой-либо формальной системе F, я обычно буду под­разумевать, что она действительно достаточно обширна в этом смысле. Это допущение не отразится на наших рассуждениях сколько-нибудь существенным образом. (Тем не менее, рассмат­ривая формальные системы в таком контексте, я, для пущей яс­ности, буду иногда снабжать их эпитетом «достаточно обширная» или иным подобным.)

– Конец работы –

Эта тема принадлежит разделу:

Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления

Http hotmix narod ru... РОДЖЕР ПЕНРОУЗ... Тени разума В поисках науки о сознании...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Некоторые более глубокие математические соображения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Разум и наука
Насколько широки доступные науке пределы? Подвластны ли ее методам лишь материальные свойства нашей Вселенной, тогда как познанию нашей духовной сущности суждено навеки остаться за ра

Спасут ли роботы этот безумный мир?
Открывая газету или включая телевизор, мы всякий раз рис­куем столкнуться с очередным проявлением человеческой глупо­сти. Целые страны или отдельные их области пребывают в вечной конфронтации, кото

Вычисление и сознательное мышление
В чем же здесь загвоздка? Неужели все дело лишь в вычис­лительных способностях, в скорости и точности работы, в объеме памяти или, быть может, в конкретном способе «связи» отдель­ных структурных эл

Физикализм и ментализм
Я должен сделать здесь краткое отступление касательно использования терминов «физикалист» и «менталист», обыч­но противопоставляемых один другому, в нашей конкретной ситуации, т. е. в отношении кра

Вычисление: нисходящие и восходящие процедуры
До сих пор было не совсем ясно, что именно я понимаю под термином «вычисление» в определениях позиций

Противоречит ли точка зрения В тезису Черча—Тьюринга?
Вспомним, что точка зрения предполагает, что обладаю­щий сознанием мозг функционирует так

Аналоговые вычисления
До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным циф­ровым компьютерам или, точнее, к их теоретическим предше­ственникам — машинам Тьюринга.

Невычислительные процессы
Из всех типов вполне определенных процессов, что приходят в голову, большая часть относится, соответственно, к категории феноменов, называемых мною «вычислительными» (имеются в виду, конечно же, «ц

Завтрашний день
Так какого же будущего для этой планеты нам следует ожи­дать согласно точкам зрения . Есл

Обладают ли компьютеры правами и несут ли ответственность?
С некоторых пор умы теоретиков от юриспруденции начал занимать один вопрос, имеющий самое непосредственное отно­шение к теме нашего разговора, но в некотором смысле более практический). Суть

Доказательство Джона Серла
Прежде чем представить свое собственное рассуждение, хотелось бы вкратце упомянуть о совсем иной линии доказа­тельства — знаменитой «китайской комнате» философа Джона Серла — главным образом для то

Свидетельствуют ли ограниченные возможности сегодняшнего ИИ в пользу ?
Но почему вдруг ? Чем мы реально располагаем, что мож­но было бы интерпретировать

Платонизм или мистицизм?
Критики, впрочем, могут возразить, что отдельные выводы в рамках этого доказательства Гёделя следует рассматривать не иначе как «мистические», поскольку упомянутое доказательство, судя по всему, вы

Почему именно математическое понимание?
Все эти благоглупости, конечно, очень (или не очень) заме­чательны — так, несомненно, уже ворчат иные читатели. Однако какое отношение имеют все эти замысловатые проблемы мате­матики и философии ма

Какое отношение имеет теорема Гёделя к «бытовым» действиям?
Допустим однако, что мы все уже согласны с тем, что при формировании осознанных математических суждений и получе­нии осознанных же математических решений в нашем мозге дей­ствительно происходит что

Реальность
Интуитивные математические процедуры, описанные в имеют весьма ярко выраженный специфиче

Воображение?
Говоря о мысленной визуализации, мы ни разу не указали явно на невозможность воспроизведения этого процесса вычис­лительным путем. Даже если визуализация действительно осу­ществляется посредством к

Теорема Гёделя и машины Тьюринга
В наиболее чистом виде мыслительные процессы проявля­ются в сфере математики. Если же мышление сводится к вы­полнению тех или иных вычислений, то математическое мыш­ление, по всей видимости,

Вычисления
В этом разделе мы поговорим о вычислениях. Под вычис­лением (или алгоритмом) я подразумеваю действие некоторой машины Тьюринга, или, иными словами, действие компьютера, задаваемое той или ин

Незавершающиеся вычисления
Будем считать, что с задачей (А) нам просто повезло. По­пробуем решить еще одну: (B) Найти число, не являющееся суммой квадратов четырех чи­сел. На этот раз, добравшись до числа 7

Как убедиться в невозможности завершить вычисление?
Мы установили, что вычисления могут как успешно завер­шаться, так и вообще не иметь конца. Более того, в тех слу­чаях, когда вычисление завершиться в принципе не может, это его свойство иногда оказ

Семейства вычислений; следствие Гёделя — Тьюринга
Для того, чтобы понять, каким образом из теоремы Гёделя (в моей упрощенной формулировке, навеянной отчасти идеями Тьюринга) следует все вышесказанное, нам необходимо будет сделать небольшое обобщен

Условие -непротиворечивости
Наиболее известная форма теоремы Гёделя гласит, что фор­мальная система F (достаточно обширная) не может быть од­новременно полной и непротиворечивой. Это не совсем та зна­менитая «теорема о неполн

Формальные системы и алгоритмическое доказательство
В предложенной мною формулировке доказательства Гёделя—Тьюринга (см. §2.5) говорится только о «вычислениях» и ни словом не упоминается о «формальных системах». Тем не ме­нее, между этими двумя конц

ГЕДЕЛИЗИРУЮЩАЯ МАШИНА ТЬЮРИНГА В ЯВНОМ ВИДЕ
Допустим, что у нас имеется некая алгоритмическая про­цедура А, которая, как нам известно, корректно устанавливает незавершаемость тех или иных вычислений. Мы получим вполне явную процедуру

Гёдель и Тьюринг
В главе 2 была предпринята попытка продемонстрировать мощь и строгий характер аргументации в пользу утверждения (обозначенного буквой ^), суть которого заключается в том, что математическое пониман

О психофизи(ологи)ческой проблеме
  Комментарии Ю.П.Карпенко к книге Р.Пенроуза: Тени ума: В поисках потерянной науки о сознании.   Как мы видим, выд

PENROSE R. Shadows of the mind: A search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.
  Реферат подготовлен Ю.П.Карпенко   В реферируемой книге крупного английского математика и физика-теоретика Роджера Пенроуза развиваются ид

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги