рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Истечение жидкости через насадки.

Истечение жидкости через насадки. - раздел Механика, ВВЕДЕНИЕ В ГИДРАВЛИКУ Насадками Называются Короткие Трубки, Монти­руемые, Как Правило, С Внешней Ст...

Насадками называются короткие трубки, монти­руемые, как правило, с внешней стороны резервуара таким образом, чтобы внутренний канал насадка пол­ностью соответствовал размеру отверстия в тонкой стенке. Наличие такой направляющей трубки приве­дет к увеличению расхода жидкости при прочих рав­ных условиях. Причины увеличения следующие При

отрыве струи от острой кромки отверстия струя попадает в канал насадка, а поскольку струя испытывает сжатие, то стенок насадка она касается на расстоянии от 1,0 до 1,5 его диаметра. Воздух, который первоначально находится в передней части насадка, вследст­вие неполного заполнения его жидкостью постепенно выносится вместе с потоком жидко­сти. Таким образом, в этой области образуется «мёртвая зона», давление в которой ниже,

чем давление в окружающей среде (при истечении в атмосферу в «мёртвой зоне» образу­ется вакуум). За счёт этих факторов увеличивается перепад давления между резервуаром и областью за внешней его стенкой и в насадке генерируется так называемый эффект подса­сывания жидкости из резервуара. Однако наличие самого насадка увеличивает гидравли­ческое сопротивление для струи жидкости, т.к. в самом насадке появляются потери напо­ра по длине трубки. Если трубка имеет ограниченную длину, то влияние подсасывающего эффекта с лихвой компенсирует дополнительные потери напора по длине. Практически эти эффекты (подсасывание и дополнительные сопротивления по длине) компенсируются при соотношении: / = 55 d. По этой причине длина насадков ограничивается / = (3 -5)d . По месту расположения насадки принято делить на внешние и внутренние насадки. Когда насадок монтируется с внешней стороны резервуара (внешний насадок), то он оказывается более технологичным, что придаёт ему преимущество перед внутренними насадками. По форме исполнения насадки подразделяются на цилиндрические и конические, а по форме входа в насадок выделяют ещё коноидальные насадки, вход жидкости в которые выпол­нен по форме струи.

Внешний цилиндрический насадок. При истечении жидкости из цилиндрического насадка сечение выходящей струи и сечение отверстия одинаковы, а это значит, что ко­эффициент сжатия струи= 1. Скорость истечения:

Приняв, коэффициенты скорости и расхода:

Для вычисления степени вакуума в «мёртвой зоне» запишем уравнение Бернулли для двух сечений относительно плоскости сравнения проходящей через ось насадка: А - А и С - С (ввиду малости поперечного размера насадка сечение С - С будем считать «горизон­тальным»,^ плоским):

Величинучасто называют действующим напором, что соответствует

избыточному давлению. Приняв, а0с =1 получим:

Учитывая, что для цилиндрического насадка= 0,82, получим:

Для затопленного цилиндрического насадка все приведенные выше рассуждения ос­таются в силе, только за величину действующего напора принимается разность уровней свободных поверхностей жидкости между питающим резервуаром и приёмным резервуа­ром.

Если цилиндрический насадок расположен под некоторым углом к стенке резервуара

(под углом к вертикальной стенке резер­вуара или горизонтальный насадок к на­клонной стенке резервуара), то коэффи­циент скорости и расхода можно вычис­лить, вводя соответствующуюпоправку:

где:

Значения коэффициента расхода можно взять из следующей таблицы:

Сходящиеся насадки. Если придать насадку форму конуса, сходящемуся по направ­лению к его выходному отверстию, то такой насадок будет относиться к группе сходящихся конических насадков. Та­кие насадки характеризуются углом конусности а. От ве­личины этого угла зависят все характеристики насадков. Как коэффициент скорости, так и коэффициент расхода увеличиваются с увеличением угла конусности, при угле

» конусности в 13° достигается максимальное значение ко-

эффициента расхода превышающее 0,94. При дальнейшем увеличении угла конусности насадок начинает работать как отверстие в тонкой стенке, при этом коэффициент скоро­сти продолжает увеличиваться, а коэффициент расхода начинает убывать. Это объясняет­ся тем, что уменьшаются потери на расширение струи после её сжатия. Область примене­ния сходящихся насадков связана с теми случаями, когда необходимостью иметь боль­шую выходную скорость струи жидкости при значительном напоре (сопла турбин, гидро­мониторы, брандспойты). - .-. . •

Расходящиеся насадки. Вакуум в сжатом сечении расходящихся насадков больше, чем у цилиндрических насадков и увеличивается с возрастанием угла конусности, что увеличивает расход жидкости. Но с увеличением угла конусности расходящихся насадков возрастает опасность отрыва струи от стенок насадков. Необходимо отметить, что потери энергии в расходящемся насадке больше, чем в насадках других типов. Область примене­ния расходящихся насадков охватывает те случаи, где требуется большая пропускная спо­собность при малых выходных скоростях жидкости (водоструйные насо­сы, эжекторы, гидроэлеваторы и др.)

Коноидальные насадки. В коноидальных насадках вход в насадки выполнен по профилю входящей струи. Это обеспечивает уменьшение потерь напора до минимума. Так значение коэффициентов скорости и расхода в коноидальных цилиндрических насадков достигает 0,97 - 0,99. 7.4. Истечение жидкости через широкое отверстие в боковой стенке.Истечение жидкости через большое отверстие в боковой стенке сосуда отличается от

истечения через малое отверстие тем, что величина напора будет различной для различных площадок в сечении отвер­стия. Максимальным напором будет напор в площадках примыкающих к нижней кромке отверстия. В связи с этим и скорости в различных элементарных струйках проходящих через сечение отверстия также будут неодинаковы В то же время давление во внешней среде, в которую происходит истечение жидкости одинаково и равно атмосферному давлению.

Выделим в площади сечения отверстия малый элемент его сечения высотой dH, рас­положенный на глубине Н под уровнем свободной поверхности жидкости.

Тогда расход жидкости через этот элемент сечения отверстия будет равен:

где Н - глубина погружения центра тяжести элемента площади сечения отвер­стияпод уровень свободной поверхности жидкости. Полный расход жидкости через всё сечение отверстия будет:

Данное выражение будет справедливым, если величиной скоростного напора на сво­бодной поверхности жидкости можно пренебречь.

– Конец работы –

Эта тема принадлежит разделу:

ВВЕДЕНИЕ В ГИДРАВЛИКУ

На сайте allrefs.net читайте: "ВВЕДЕНИЕ В ГИДРАВЛИКУ"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Истечение жидкости через насадки.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные физические свойства жидкостей
Плотность и удельный вес. К основным физическим свойствам жидкостей следует отнести те её свойства, которые определяют особенности поведения жидкости при её движении.

Многокомпонентные жидкости
В природе химически чистых жидкостей нет, технических рафинированных тоже немного. Обычно в основной жидкости всегда имеются незначительные или весьма суще­ственные добавки (примеси). Для капельной

Неньютоновские жидкости
Многокомпонентные жидкости как гомогенные, так и гетерогенные, в большей сте­пени, могут содержать в своём составе компоненты, значительно изменяющие вязкость жидкости, и даже кардинально меняющие

Основы гидростатики 2.1. Силы, действующие в жидкости
Поскольку жидкость обладает свойством текучести и легко деформируется под дей­ствием минимальных сил, то в жидкости не могут действовать сосредоточенные силы, а возможно существование лишь сил расп

Основное уравнение гидростатики
Рассмотрим случай равновесия жидкости в состоя­нии «абсолютного покоя», т.е. когда на жидкость дейст­вует только сила тяжести. Поскольку объём жидкости в сосуде мал по сравнению с объёмом Земли, то

Сообщающиеся сосуды
В своей практической деятельности человек часто сталкивается с вопросами равно­весия жидкости в сообщающихся сосудах, когда два сосуда А и В соединены между со­бой жёстко или гибким шлангом.

Кинематические элементы движущейся жидкости
Основной кинематической характеристикой гидродинамического поля является ли­ния тока - кривая, в каждой точке которой вектор скорости направлен по касательной к кривой. И ходя из данного определени

Уравнение неразрывности для элементарной струйки жидкости
Выделим в элементарной струйке жидкости двумя сечениями 1 - Г и 2 - 2' малый отсек жидкости длиной dl. Объём жидкости внутри выделенного отсека

Элементы кинематики вихревого движения жидкости
Поступательному движению жидкости часто сопутствует вихревое движение, вы­званное вращением элементарного объёма жидкости вокруг некоторой оси Такое враще­ние жидкости называется вихрем; угловая ск

Поток жидкости
Поток жидкости представляет собой совокупность элементарных струек жидкости. По этой причине основные кинематические характеристики потока во многом совпадают по своему смыслу с аналогичными характ

Динамика идеальной жидкости
4.1. Дифференциальное уравнение движения идеальной жидкости (при устано­вившемся движении) и его интегрирование Для вывода уравнения движения жидкости обратимся к записанн

Уравнение Бернулли для элементарной струйки идеальной жидкости
Выделим двумя нормальными к линиям тока се­чениями 1 - 1 и 2 - 2 отсек жидкости, который будет находиться под действием сил давления

Интерпретация уравнения Бернулли
Все члены уравнения Бернулли имеют линейную размерность и представляют собой напоры: z - называется геометрическим напором (геометрической высотой), представляет собой место положения цент

Динамика реальной (вязкой жидкости)
При изучении движения реальной (вязкой жидкости) можно пойти двумя разными путями: воспользоваться готовыми дифференциальными уравнениями и их решения­ми, полученными для идеальной жидкост

Система дифференциальных уравнений Навье - Стокса
При= const и

Уравнение Бернулли для потока реальной жидкости
При массовом расходе в живом сечении элементарной струйки .кинети- ческая энергия жидкости проходящей чер

Гидравлические сопротивления
Потери удельной энергии в потоке жидкости, безусловно, связаны с вязкостью жид­кости, но сама вязкость - не единственный фактор, определяющий потери напора. Но можно утверждать, что величина потерь

Потери напора по длине
При установившемся движении реальной жидкости основные параметры потока: ве­личина средней скорости в живом сечении (v) и величина перепада давления

Экспериментальное изучение движения жидкости
При проведении многочисленных экспериментов с потоками движущейся жидкости было неоднократно подмечено, что на величину гидравлических сопротив­лений кроме физических свойств самой жидкости, формы

Турбулентное движение жидкости
Структура турбулентного потока. Отличи­тельной особенностью турбулентного движения жидкости является хаотическое движение час­тиц в потоке. Однако при этом часто можно на­

Кавитационные режимы движения жидкости
В жидкости при любом давлении и температуре всегда растворено какое-либо количество газов. Уменьшение давления в жидкости ниже давления насыщения жидко­сти газом сопровождается выделением рас­

Отверстие в тонкой стенке
Одной из типичных задач гидравлики, которую можно назвать задачей прикладного характера, является изучение процессов, связанных с истечением жидкости из отверстия в тонкой стенке и через н

Движении (жидкости).
Истечение жидкости в газовую среду при атмосферном давлении. При истечении из отверстия в тонкой стенке криволи­нейные траектории частиц жидкости сохраняют свою форму и за пределами

Неустановившееся истечение жидкости из резервуаров.
Истечение из резервуара произвольной формы с постоянным притоком. Резервуары являются наиболее распространёнными хранилищами различных жидкостей. К наиболее существенным технологическим опер

Простой трубопровод
Основным элементом любой трубопроводной системы, какой бы сложной она ни была, является простой трубопровод. Классическим определением его будет- простым трубопроводом является трубопровод

Неустановившееся движение жидкости в трубопроводе 9.1. Постановка вопроса, требования к модели и допущения
Вопросы изучения неустановившегося движения реальной жидкости очень сложны. Если окажется необходимым получить самое общее решение поставленной задачи, то придётся рассматривать систему уравнений,

Скорость распространения упругих волн в трубопроводе
Рассмотрим общую задачу о распространении упругой волны в трубопроводе с упру­гими стенками (т.е. с учётом сжимаемости материала труб). Выделим элемент трубопро­вода протяжённостью

Методы предотвращения негативных явлений гидравлического удара и его использование
Резкое увеличение давления, сопровождающее гидравлический удар - явление край­не негативное, т.к. гидравлический удар может разрушить трубопровод или какие-либо элементы гидравлических машин, испыт

Движкние газа по трубам 10.1. Основные положения и задачи
Основной отличительной особенностью движения газа по трубам от движения ка­пельных жидкостей заключается в том, что капельные жидкости характеризуются весьма малой сжимаемостью, а их вязкость практ

Движение неньютоновских жидкостей 12.1. Некоторые характеристики и реограммы неньютоновских жидкостей.
Изучение процесса движения неньютоновских жидкостей является весьма трудоём­кой задачеё как с точки зрения полноты понимания всех физико-химических процессов сопровождающих такое движение сложного

Движение вязкопластических жидкостей в трубах.
Для того, чтобы вязкопластичная жидкость начала перемещаться необходимо соз­дать между начальным и конечным сечениями участка трубы длиной / некотурую раз­ность напоров, при которой будет преодолен

Гидравлическая теория смазки 13.1. Ламинарное движение жидкости в узких щелях
В большинстве машин и механизмов с целью снижения трения между движущимися узлами используются принципы гидравлической смазки, когда малые зазоры между со­прикасающимися элементами заполняются низк

Распределение скоростей и касательных напряжений в щелевом зазоре
После интегрирования полученного дифференциального уравнения получим: Величина постоянной инте

Элементы теории подобия
Решение задач гидравлики аналитическими методами на базе дифференциальных уравнений и различных методов математического анализа не нашло широкого примене­ния для практических целей. Необходимость в

Физическое моделирование
Физическая модель отличается от натуры лишь размерами, т.е. модель по своим раз­мерам может быть, чаще всего лишь уменьшенной копией натуры, либо она может (в не­которых случаях) превосходить по св

Математическое моделирование
Для построения математических моделей в гидравлике могут быть использованы процессы, имеющие единую с гидравликой природу взаимодействия физических тел. Т.е. моделями для процессов, протекающих в ж

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги