рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Проектирование геодезической сети сгущения

Работа сделанна в 1999 году

Проектирование геодезической сети сгущения - Курсовая Работа, раздел Геология, - 1999 год - Курсовая Работа Тема: Проектирование Геодезической Сети Сгущения И Съемочной ...

КУРСОВАЯ РАБОТА тема: Проектирование геодезической сети сгущения и съемочной сети в равнинно-пересеченных и всхолмленных районах при стереотопографической съемке для получения карты масштаба 1:25 000 с высотой сечения рельефа 2 метра работу выполнил: работу проверил: студент ГФ II-1 Лебедев В.Ю. Москва 1999 г. Введение: Курсовая работа представляет собой комплекс вопросов по проектированию геодезической сети сгущения, по планово-высотной привязке опознаков, а также имеет учебную цель: практическое использование учебных формул в конкретных технических задачах.

Глава 1 Разграфка и номенклатура листов топографической карты 1:5000 на участке съемки. 1. Определение географических координат углов рамки трапеции листа топографической карты масштаба 1:25000 N-41-41-A-а N-14 буква, поэтому северная параллель рамки трапеции: 14´4°=56° восточный меридиан рамки трапеции: (41-30)´6°=66° 1.2. Определение номенклатуры и географических координат углов рамок трапеции листов топографической карты 1:5000 на участке съемки N-41-41 Схема расположения листов карт масштаба 1:5000 Глава 2 Проект аэрофотосъемки и размещение планово-высотных опознаков. При стереотопографической съемке изготовление карт выполняют с использованием пар перекрывающихся аэрофотоснимков (стереопар) Фотографирование местности при аэрофотосъемке выполняют с самолета автоматическими аэрофотоаппаратами. 1. Определение маршрутов аэрофотосъемки и границ поперечного перекрытия снимков. Направление маршрутов аэрофотосъемки (съемки) выполнияют с востока на запад (с запада на восток). Первый маршрут, как правило, выполняют по северной рамке трапеций, последний - около южной.

Съемку производят таким способом, чтобы снимки перекрывались по маршруту (продольное перекрытие Р=80 %-90% ) и поперек маршруту ( поперечное перекрытие Q=30%-40% ). Пусть аэрофотосъемку выполняют АФА с фокусным расстояением 100 мм Примем масштаб фотографирования ( масштаб съемки ) в соответствии с инструкцией по топографической съемке равным 1:20000 ( m=20000 - знаменатель численного масштаба аэрофотосъемки ). Пусть размер аэрофотоснимка 18см.´18см. ( l=18 см размер стороны снимка); продольное перекрытие Р=80 %. Поперечное перекрытие Q=30 %. Базис фотографирования при аэрофотосъемке ( расстояние между центрами снимков в пространстве ) На карте масштаба 1:25000 ( М=25000 - знаменатель численного масштаба используемой карты ) базис фотографирования равен: Расстояние D между осями маршрутов на местности равно: Расстояние d между осями маршрутов на карте вычисляется по формуле: Граница маршрута, определяющая поперечное перекрытие аэрофотосников находиться по обе стороны от оси маршрута.

На карте имеем: 2. Схема размещения планово-высотных опознаков на участке съемки. Для выполнения фотограмметрических работ, в частности для трансформирования аэрофотоснимков ( устранение искажений и приведение снимков к масштабу создаваемой карты), необходимо иметь в пределах рабочей зоны каждого аэрофотоснимка четыре точки с извесными координатами, расположенные примерно по углам.

Любая контурная точка на снимке и на местности , координаты которой определены геодезическим способом, называется опорным пунктом или опознаком.

При сплошной подготовке координаты опознаков определяют из наземных геодезических работ.

В последнее время производят разрешенную привязку аэрофотоснимков, т.е. значительную часть опознаков определяют фотограмметрическим методом.

При создании карты масштаба 1:5000 с высотой сечения рельефа h=2 м высотные опознаки совмещаются с плановыми ( планово-высотные опознаки ). Опознаки выбираются в зонах перекрытия. В качестве опознаков выбираю четкие контуры, которые четко опознаются на снимке с точностью не менее 0,1 мм. в масштабе создаваемой карты ( это могут быть перекрестки дорог, троп и т.д.). На крутых склонах опознаки не выбираются.

В районах где отсутствуют естественные контуры, которые можно было бы использовать в качестве опознаков, выполняют маркировку - создают на месте искусственные геометрические фигуры (круг, квадрат, и т.д.), которые четко изобразятся на аэрофотоснимке. При создании карт в масштабе 1:5000 на участках, протяженность которых по направлению маршрутов аэрофотосъемки составляет 160-200 см. в масштабе создаваемой карты, опознаки располагают по схеме: Схема расположения планово-высотных опознаков.

Глава 3 Проект геодезической сети сгущения. 1. Проектирование и оценка проекта полигонометрического хода 4 класса. Для сгущения ГГС проектируют полигонометрические ходы 4 класса таким образом, чтобы созданная геодезическая сеть сгущения наилучшим образом удовлетворяла задаче построения съемочного обоснования.При проектировании следует руководствоваться инструкцией по топографической съемке для масштабов 1:5000, 1:2000,1:1000, 1:500. Полигонометрия 4 класс 1 разряд 2 разряд Длинна ходов, км. между твердыми пунктами £15 £5 £3 между твердыми пунктами и узловой точкой £10 £3 £2 между узловыми точками £7 £2 £1,5 Длинна сторон , км Smax £2,00 £0,80 £0,35 Smin ³0,25 ³0,12 ³0,08 Sпред 0,50 0,30 0,20 Число сторон в ходе £15 £15 £15 Относительная ошибка хода £1/25000 £1/10000 £1/5000 СКО измерения угла £3² £5² £10² Предельная угловая невязка 5² 10² 20² Прооектировать желательно по дорогам, на вершине холма, не проектировать на пашне.

В полигонометрические ходы можно включать опознаки, т.е. пункты можно объеденить с опознаками Определение формы хода Т 3-Т 2 пункты хода Si м. a¢i ° hi¢ м. L, км. MSi мм. m2Si Т 3 1070 708 72 13,54 183,3 пп 1 1743 1305 33 16,52 272,9 пп 2 1015 1048 53 15,24 232,6 пп 3 170 835 60 14,18 201,1 пп 4 565 5,472 1252 38 16,26 264,4 пп 5 1350 1100 44 15,50 240,2 пп 6 2118 1302 22 18,48 341,5 пп 7 1625 1270 53 16,35 267,3 пп 8 622 1240 57 16,20 262,4 пп 9 637 547 21 12,74 162,3 ОПВ 5 585 878 33 14,39 207,1 Т 2 1070 [S]=11485 [mS2]=2635,1 Критерии вытянутости хода. 1. Должно выполняься условие: hi¢ £ 1/8 L hmax¢=2118Þ 1/8 L=684 2118>684Þ Первый критерий не выполнен 2. Должно выполняься условие: a¢i £ 24 a¢max=72° 72°¢ > 24°¢ Þ Условие не выполнено 3. Должно выпоняться условие: Þ Условие не выполнено Вывод: так как не выполняеться 1,2,3 критерий, то ход являеться изогнутым 3.1.1. Определение предельной ошибки положения пункта в слабом месте хода. Для запроектированного хода должно выполняться условие: ƒs /[S] £1/T (для 4 класса 1/T= 1/25000 ) т.е. пред.ƒs /[S]=1/T так как M= пред.ƒs /2 , то средняя квадратическая ошибка M положения конечной точки полигонометрического хода до уравнивания будет равна: M=[s]/2T=11485/50000=0,2297 Тогда предельная ошибка положения пункта в слабом месте полигонометрического хода после уравнивания равно: пред.=2mв сл.м.х.=M=0,230 3.1.2. Расчет влияния ошибок линейных измерений и выбор приборов и методов измерений.

Так как выполнено проектирование светодальномерного полигонометрического хода, то СКО (М) положения пункта в конце хода до уравнивания в случае, когда углы исправлены за угловую невязку, будет вычисляться с использованием формулы: C учетом принципа равного влияния ошибок линейных и угловых измерений на величину М можно записать: Для измерения длин линий необходимо выбрать такой светодальномер, чтобы выполнялось условие: С учетом этой формулы можно записать: Тогда: Этим требованиям удовлетворяет светодальномер СТ5 Для этого светодальномера . Далее вычислим для каждой стороны хода в таблице 3.1 Должно выполняться условие: - условие выполнено Расчет предельных ошибок. 1. Компарирование мерной проволки. 2. Уложение мерного прибора в створе измеренной линии. 3. Определение температуры мерного проибора 4. Определение превышения одного конца мерного прибора. 5.Натяжение мерного прибора.

Следовательно, чтобы создать базис длиной 360 м. с предельной относительной ошибкой необходимо: 1. Выполнять компарирование мерного прибора с ошибкой 0.09 мм. 2. Выполнять вешение с помощью теодолита при измерении длины базиса 3. Температуру измерять термометром-пращой Следовательно светодальномер СТ5 пригоден для выполнения измерений в запроектированном ходе. Технические характеристики светодальномера СТ5 Средне квадратическая погрешность измерения расстояний, мм 10+5.10-6 Диапазон измерения расстояний, м с отражателем из 6 призм от 2 до 3000 с отражателем из 18 призм от 2 до 5000 Предельные углы наклона измеренной линии ±22° Зрительная труба увеличение, крат 12 угол поля зрения 3° пределы фокусирования от 15 м. до µ Оптический центрир светодальномера: увеличение, крат 2,5 пределы фокусирования от 0,6 до µ Цена деления уровня светодальномера 30² Средне потребляемая мощность, Вт 5 Цена единицы младщего разряда цифрового табло, мм 1 Большой отражатель: количество трипель-призм 6 количество трипель-призм на отражателе с приставками 18 увеличение оптического центрира, крат 2,3 угол поля зрения 5° пределы фокусирования от 0,8 до 6 м. цена деления уровней 2¢ и 10¢ Источник питания выходное напряжение, Вт: начальное 8,5 конечное 6,0 емкость при токе разряда 1 А и температуре 20° С, А.ч не менее 11 допустимое уменьшение емкости, % при температуре от +5° до +35° 10 при температуре +50° 20 при температуре -30° 40 Масса, кг : светодальномера 4,5 светодальномера без основания 3,8 большого отражателя ( с 6 призмами ) 1,8 малого отражателя 0,5 подставки 0,7 источника питания 3,6 светодальномера в футляре 10,0 Габаритные размеры: светодальномера 230´255´290 большого отражателя 60´170´320 малого отражателя 60´100´250 источника питания 300´80´150 футляра для светодальномера 335´310´340 3.1.3. Проектирование контрольного базиса и расчет точности его измерений для уточнений значений постоянных.

Измеряем 360 метровый отрезок базисным прибором БП-3 : При расчетах точности измерения базиса исходим из условий самих наблюдений, а именно, из предположения о систематическом характере влияния источников ошибок на результат измерений. 3.1.4. Расчет влияния ошибок угловых измерений и выбор приборов и методов измерений.

С учетом принципа равных влияний СКО измерения угла mb определим на основании соотношения: , где Dц.т i - расстояние от центра тяжести хода до пункта хода i тогда Определим Dц.т i графическим способом. №№ пунктов Dц.т i D2ц.т i Т 3 3722,5 13857006 пп 1 3777,5 14269506 пп 2 2490 6200100 пп 3 1667,5 2780556 пп 4 1380 1904400 пп 5 1385 1918225 пп 6 2185 4774225 пп 7 2377,5 5652506 пп 8 2687,5 7222656 пп 9 3175 10080625 ОПВ 5 2712,5 7357656 Т 2 2182,5 4763306 [D2ц.т i]=80780767 CКО измерения угла, ровна ² Следовательно, при измерении углов необходимо использовать теодолит 3Т2КП или ему равноточные.

Технические характеристики теодолита 3Т2КП: Зрительная труба: увеличение, крат 30 поле зрения 1°30¢ фокусное расстояние объектива, мм. 239 диаметр выходного зрачка, мм 1,34 пределы фокусирования от 1,5 доµ пределы фокусировния с насадкой от 0,9 до 1,5 м Отсчетная система диаметр лимбов,мм 90 цена деления лимбов 20¢ увеличение микроскопа, крат 45 цена деления шкалы микроскопа 1² Погрешность отсчитывания 0,1² Уровни: цена деления уровней при алидаде горизонтального круга: целиндрического 15² круглого 5¢ цена деления накладного уровня, поставленного по заказу 10² Самоустонавливающийся индекс вертикального круга: диапазон действия комренсатора ±4¢ погрешность компенсации 0,8² Оптический центрир: увеличение, крат 2,5 поле зрения 4°30¢ диаметр выходного зрачка, мм. 2,2 пределы фокусирования от 0,6 до µ Круг искатель: цена деления 10° Масса, кг. : теодолита ( с подставкой ) 4,4 теодолита в футляре 8,8 Расчет точности установки теодолита, марок и числа приемов при измерении углов.

Точность угловых измерений обуславливается следующими источниками ошибок: ошибкой центрирования mц; ошибкой редукции mр; инструментальными ошибками mинстр.; ошибкой собственно измерения угла mс.и. ; ошибкой, вызванной влиянием внешних условий mвн.усл ошибкой исходных данных mисх.д. . С учетом принципа равных влияний получим: ² Определим допустимые линейные элементы редукции с учетом следующих формул: , где Smin - наименьшая длина стороны запроектированного хода с учетом таблицы 3.1. имеем Smin=480 м. тогда :мм. Следовательно теодолит и визирные марки необходимо визировать с помощью оптического центрира.

Расчитаем число приемов n¢ при измерении углов: , где -СКО визирования, для теодолита 3Т2КП - СКО отсчета; =2.0² углы необходимо измерять 3 приемами.

Пояснительная записка.

При выполнении угловых измерений рекомендуется использовать трехштативную ( многоштативную ) систему.

Для исключения влияния ошибок центрирования и редукции и, для сокращения времени измерений.

На начальном и конечном пунктах полигонометрии углы следует измерять способом круговых приемов, при этом должны выполняться следующие допуски: - расхождение при двух совмещениях не более 2² - незамыкание горизонта не более 8² - колебание двойной коллимационной ошибки в приеме не более 8² -расхождение сооответственно приведенных направлений в приемах не более 8² Между приемами осуществляеться переустановка лимба на величину На пунктах 1,2,3,4,5,6,7,8,9 углы следует измерять способом приемов (т.е. способом измерения отдельного угла) Теодолит и визирные марки необходимо центрировать с помощью оптического центрира. 3.1.5. Оценка передачи высот на пункты полигонометрии геометрическим нивелированием.

Высоты пунктов полигонометрического хода определяются из геометрического нивелирования IV класса.

Вычислим предельную ошибку определения отметки пункта в слабом месте полигонометрического хода после уравнивания. , где - СКО отметки пункта в конце нивелирного хода до уравнивания Сначала вычислим предельную невязку хода : ,где L=[S] - длина хода в км. тогда предельная ошибка определения отметки пункта в слабом месте полигонометрического хода после уравнивания равна: При производстве нивелирования рекомендуется использовать нивелир Н3КЛ Технические характеристики нивелира Н3КЛ: Средне квадратическая погрешность измерения превышения, мм.: на 1 км. хода 3 на станции, при длине визирного луча 100 м. 2 Зрительная труба: Длина зрительной трубы, мм. 180 Увеличение зрительной трубы, крат 30 Угол поля зрения зрительной трубы 1,3° Световой диаметр объектива, мм. 40 Минимальное расстояние визирования, м. 2 Компенсатор: Диапазон работы компенсатора ±15¢ Время успокоений колебаний компенсатора, с. 1 Погрешность компенсации 0,1² Лимб : Цена деления лимба 1° Погрешность отсчитывания по шкале лимба 0,1° Температурный диапазон работы нивелира от -40° до +50° Коэфициент нитяного дальномера 100 Цена деления круглого уровня 10 Масса, кг.: нивелира 2,5 укладочного ящика 2,0 Нивелирный ход прокладывается в одном направлении по программе IV класса: -нормальная длина визирного луча - 100 м. -минимальная высота визирного луча над подстилающей поверхностью - 0,2 м. -разность плеч на станции не более - 5 м. -накопление разности плеч в секции не более 10 м. -расхождение значений превышений на станции, определенных по черным и красным сторонам реек, не более 5 мм. ( с учетом разности нулей пары реек ). Глава 4. Проектирование съемочной сети. Все запроектированные в зоне поперечного перекрытия опознаки должны быть привязаны к пунктам геодезической сети сгущения или ГГС (пункты полигонометрии и триангуляции). При этом используются следующие методы привязки опознаков: 1) обратная многократная засечка 2) прямая многократная засечка 3) проложение теодолитных ходов.

Для определения высот опознаков применяют методы тригонометрического и технического нивелирования.

Расчет точности выполняется исходя из требований инструкции. Для масштаба 1:5000 с высотой сечения рельефа 2 м. СКО определения планового положения опознаков не должна превышать 0,1 мм m = 0,5 м. Предельная СКО не должна превышать 1 м. СКО определения высот опознаков не должна превышать 0,1 высоты сечения рельефа ( h ), h=0,1.2 м.=0,2 м. Предельная СКО не должна превышать 0,4 м. 4.1. Проектирование и оценка проекта обратной многократной засечки 4.1.1. Расчет точности положения опознака определенного из обратной многократ ной засечки.

Расчет выполняется для опознока ОПВ№ 9 Наименование направления ai° S, км. ОПВ 9-Т 3 280,0 1,475 ОПВ 9-пп2 333,5 1,430 ОПВ 9-пп3 16,7 1,325 ОПВ 9-пп6 63,8 3,915 Для определения СКО положения опознака Мр определенного из обратной многократной засечки опрделим веса Рх и Ру Направление ai (a)i (b)i S, км. ai bi A B A2 B2 AB ОПВ 9- Т3 280,0 20,313137 3,581754 1,475 -13,771618 -2,428308 0 0 0 0 0 ОПВ 9-пп2 333,5 9,203409 18,459364 1,430 -6,436013 -12,908646 7,335605 -10,480338 53,811100 109,837485 -76,879620 ОПВ 9-пп3 16,7 -5,927242 19,756526 1,325 4,473390 -14,910586 18,245008 -12,482278 332,880317 155,807264 -227,739262 ОПВ 9-пп6 63,8 -18,507300 9,106720 3,915 4,727280 -2,326110 18,498898 0,102198 342,209227 0,010444 1,890550 сумма 728,900644 265,655195 -302,728332 Вывод: многократная обратная засечка обеспечивает необходимую точность определения планового положения опознака.

Пусть углы измеряются теодолитом 3Т5КП методом круговых приемов Технические характеристики теодолита 3Т5КП Зрительная труба увеличение, крат 30 поле зрения 1°30¢ фокусное расстояние объектива, мм. 239 диаметр выходного зрачка, мм 1,34 пределы фокусировки от 1,5 до ¥ пределы фокусировки с насадкой от 0,5 до 1,5 м Отсчетная система диаметр лимбов, мм 90 цена деления лимбов 1° увеличение микроскопа, крат 70 цена деления шкалы 1¢ Погрешность отсчитывания 0,1¢ Уровни цена деления уровня при алидаде горизонтального круга целиндрического 30² круглого 5¢ Самоустонавливающийся индекс вертикального круга диапазон действия компенсатора ±4¢ погрешность компенсации 1-2² Оптический центрир увеличение, крат. 2,5 поле зрения 4°30¢ диаметр выходного зрачка, мм. 2,2 пределы фокусировки от 0,6 до ¥ Круг искатель цена деления 10° Масса теодолита (с подставкой), кг. 4,0 теодолита в футляре, кг 8,8 Расчитаем число приемов n¢ при измерении углов. Следовательно углы следует измерять 2 приемами. 4.1.2. Расчет точности определения высоты опознака ОПВ № 9 полученного из обратной многократной засечки.

Для определения высоты опознака ОПВ № производится тригонометрическое нивели- рование по направлениям засечки, в этом случае превышение вычисляется по форму- ле . Будем считать, что ошибками Si, Vi, i. Тогда СКО предечи вы- соты по одному направлению вычисляется по формуле: и вес значения высоты Hi:. Так как окончательное значение высоты опознака равно среднему весовому из значений высот получаемых по каждому направлению, то СКО окончательной высоты равна:, где PH=[ ] - сумма весов отметок по каждому направлению отсюда, с учетом формулы для веса значения высоты, получим: Вертикальные углы измерены теодолитом 3Т5КП с mn=12² Название направления S, м. S2, м2 1 S2 ОПВ 9- Т3 1,475 2175625 460.10-9 ОПВ 9-пп2 1,430 2044900 489.10-9 ОПВ 9-пп3 1,325 1755625 570.10-9 ОПВ9-пп6 3915 15327225 65.10-9 сумма 1584.10-9 Следовательно метод тригонометрического нивелирования обеспечивает требуюмую точность определения высоты опознока ОПВ № 9. 4.2. Проектирование и оценка проекта прямых многократных засечек. 4.2.1. Расчет точности планового положения опознака ОПВ № определенного из прямой многократной засечки.

Расчеты выполняются для опознака ОПВ № 2 Наименование направления ai° S, км. ОПВ 2-Т 2 143,2 3,645 ОПВ 2-пп3 200,5 4,545 ОПВ 2-Т 1 260,3 2,585 Направление ai (a)i (b)i S, км. ai bi a2 b2 ab ОПВ 2-Т 2 143,2 -12,355760 -16,516286 3,645 -3,389783 -4,531217 11,490629 20,531928 15,359842 ОПВ 2-пп3 200,5 7,223553 -19,320269 4,545 1,589341 -4,250884 2,526005 18,070015 -6,756104 ОПВ 2-Т 1 260,3 20,331613 -3,475346 2,585 7,865227 -1,344428 1,861796 1,807487 -10,574231 сумма 75,878430 40,409429 -1,970493 Вывод: многократная обратная засечка обеспечивает необходимую точность определения планового положения опознака.

Пусть углы измеряются теодолитом 3Т5КП методом круговых приемов Расчитаем число приемов n¢ при измерении углов. Следовательно углы следует измерять 2 приемами. 4.2.2. Расчет точности высоты опознака определенного из прямой многократной засечки.

Определим СКО высоты опознака ОПВ № 2 Для определения высоты опознака ОПВ № производится тригонометрическое нивели- рование по направлениям засечки, в этом случае превышение вычисляется по форму- ле . Вес значения высоты Hi:. Так как окончательное значение высоты опознака равно среднему весовому из значений высот получаемых по каждому направлению, то СКО окончательной высоты равна:, где PH=[ ] - сумма весов отметок по каждому направлению отсюда, с учетом формулы для веса значения высоты, получим: Вертикальные углы измерены теодолитом 3Т5КП с mn=12² Название направления S, м. S2, м2 1 S2 ОПВ 2-Т 2 3,645 13286025 75.10-9 ОПВ 2-пп3 4,545 20657025 48.10-9 ОПВ 2-Т 1 2,585 6682225 150.10-9 сумма 273.10-9 Следовательно метод тригонометрического нивелирования обеспечивает требуюмую точность определения высоты опознока ОПВ № 2 . 4.3. Проектирование и оценка проекта теодолитного хода Т 3-пп1 Для определения планового положения опознаков можно применять теодолитный ход. Теодолитные хода при создании съемочной сети для стереотопографической съемки в масштабе 1:5000 должны удовлетворять следующим требованиям: предельная отностительная ошибка допустимая [S], км. Smax Smin на застроенной на незастроенной 2,0 350 40 20 4,0 350 40 20 6,0 350 40 20 В соответствии с инструкцией стороны теоджолитного хода могут измеряться светодальномерными насадками, оптическими дальномерами, мерными лентами, электронными тахеометрами и другими.

– Конец работы –

Используемые теги: Проектирование, геодезической, сети, сгущения0.053

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Проектирование геодезической сети сгущения

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Проектирование геодезической сети сгущения и съемочной сети в равнинно-пересеченных и всхолмленных районах при стереотопографической съемке для получения карты масштаба 1 25 000 с высотой сечения рельефа 2 метра
Первый маршрут, как правило, выполняют по северной рамке трапеций, последний - около южной. Съемку производят таким способом, чтобы снимки перекрывались по маршруту… На карте имеем 2. Схема размещения планово-высотных опознаков на участке съемки. Для выполнения фотограмметрических…

Проектирование и расчет дождевой канализации является частью курсового проекта Водоотводящие сети и включает следующие разделы: выбор бассейнов канализования и трассировки сети
Проектирование и расчет дождевой канализации является частью курсового проекта Водоотводящие сети и включает следующие разделы выбор бассейнов... В пояснительную записку включаются все приведенные выше разделы... В графической части проекта на генплане города наносится дождевая сеть с указанием диаметров и длин расчетных...

КУРСОВОЙ ПРОЕКТ по курсу Электрические системы и сети Проектирование электрической сети 110 кВ
ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ... ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ... КАФЕДРА ПЕРЕДАЧА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ...

Архитектура компьютерной сети. Типовой состав оборудования локальной сети перейти. Физическая структуризация локальной сети. Повторители и концентраторы
Державний університет інформаційно комунікаційних технологій... Навчально науковий інститут телекомунікацій та... КАФЕДРА ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ...

КУРСОВОЙ ПРОЕКТ по курсу «Электрические системы и сети» «Проектирование электрической сети 110 кВ»
МОЛОДЕЖИ И СПОРТА УКРАИНЫ... ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ... ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ...

КУРСОВОЙ ПРОЕКТ по курсу «Электрические системы и сети» «Проектирование электрической сети 110 кВ»
МОЛОДЕЖИ И СПОРТА УКРАИНЫ... ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ... ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ...

КУРСОВОЙ ПРОЕКТ по курсу Электрические системы и сети Проектирование электрической сети 110 кВ
ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ... ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ... КАФЕДРА ПЕРЕДАЧА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ...

Экспертная система по проектированию локальной сети ("NET Совет")
Витую пару лучше всего использовать при наличчи в доме или подъезде нескольких абонентов, которых легче соеденить используя один хаб и несколько… Максимальное количество машин - 1024. Как показали опыты на обоpудовании 3COM… Чтобы обеспечить возможность увеличивать сеть, была введена концепция повтоpителя.Они не пpосто соединяли два куска…

Проектирование строительно-монтажных работ по сооружению контактной сети
Осуществляется это с помощью тяговых подстанций, основных распределителей электрической энергии на железнодорожном транспорте.Задачей данного… Поэтому крайне важно правильно произвести строительные и монтажные работы, а… Выполнение работ по строительству железных дорог в установленные сроки необходимо осуществлять в соответствии с…

Лекция: Уровни абстракции ОС. ОС с архитектурой микроядра. Виртуальные машины. Цели проектирования и разработки ОС. Генерация ОС В лекции рассматриваются следующие вопросы: методы проектирования и реализации ОС: уровни абстракции ОС; ОС с архитектурой мик
В лекции рассматриваются следующие вопросы методы проектирования и реализации... Содержание Введение Уровни абстракции ОС Операционные системы с микроядром Виртуальные машины другой распространенный подход к...

0.026
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам
  • Компьютерные сети. И основные задачи комп сетей Такие огромные потенциальные возможности, которые несет в себе вычислительная сеть и тот новый потенциальный подъем, который при этом испытывает… Поэтому необходимо разработать принципиальное решение вопроса по организации… Компьютерные сети 1. Основные сведения Локальная сеть представляет собой набор компьютеров, периферийных устройств…
  • Проектирование районной электрической сети Режимы работы, надёжность энергоснабжения, распределительное устройство, источник питания, узловая районная подстанция, регулирование напряжения,… По каждому режиму решался вопрос регулирования напряжения.Содержание Введение… Однако проектирование всей системы от электростанций до потребителей с учетом особенностей элементов с одновременным…
  • Проектирование локальной вычислительной сети Одним из эффективным направлений является автоматизированные экономико-информационные системы АЭИС. В настоящем проекте делается попытка… Не имеет смысла доказывать актуальность данной проблемы, так как внедрение… Банк имеет три филиала и центральный офис внутренние связи.
  • Архитектура сотовых сетей связи и сети абонентского доступа Это будет проиллюстрировано на примерах построение сетей пикосотовой архитектуры будет рассмотрено на примере стандарта DECT построение сетей… Некоторые производители создали оборудование для беспроводных ЛВС,… В их состав вошли средства RLL системы, обеспечивающие беспроводный доступ к ресурсам сетей общего пользования для…
  • Проектирование электрических сетей железных дорог