рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Энергетический метод исследования устойчивости.

Энергетический метод исследования устойчивости. - раздел Строительство, Устойчивость круговой бесшарнирной арки под действием радиальной нагрузки. ...

Основан на исследовании энергетических признаков устойчивого и не устойчивого равновесия упругой системы, согласно которым система находится в состоянии устойчивого равновесия, если её потенциальная энергия минимальна по сравнению с энергией смежных равновесных систем.

Если , то равновесие устойчиво.

Пример: Определить Ркр для жёсткого стержня.

Выразим изменения упругой энергии системы через работу силы Р. Работа силы:

 

Работа совершаемая опорным моментом, определяется:

Изменение полной упругой энергии:

Энергетическим критерием потери устойчивости системы является условие:


42, 48. Учёт сил сопротивления при вынужденных колебаниях. Резонанс. Коэффициент динамичности.

При вынужденных колебаниях на систему кроме сил инерции и сил сопротивления действует сила P(t):

Общее решение уравнения:

Где - общее решение однородного уравнения; - частное решение неоднородного уравнения.

K- динамический коэффициент:

Где - относительная частота.

При совпадении частот вынужденных колебаний и частот собственных колебанийвозникает резонанс и при n=0 динамический коэффициент стремится к бесконечности. Явление резонанса при действии периодических сил может привести к разрушению конструкции, поэтому при действии на конструкцию периодических сил с частотой необходимо проверять, насколько близка эта частота к частоте свободных колебаний .

11. Применение уравнений 3-х моментов для расчёта неразрезных балок.

В качестве основной системы необходимо взять систему разрезных балок, полученную из заданной системы включением шарниров в опорные сечения. За неизвестное примем опорный изгиб. Моменты, очевидно, что число их равно числу промежуточных опор при наличии крайних шарнирных опор. Решение выбранной основной системы заключается в том, что эпюры моментов от единичных усилий распространяются в ней только на два соседних пролёта и значит, большое число побочных перемещений обращается в ноль. Для составления типового канонического уравнения в развёрнутом виде строим эпюры изгибающих моментов в основной системе от внешней нагрузки и единичных усилий. Из рассмотрения этих эпюр вытекает, что типовые канонические уравнения будет трёхчлен следующего вида:

Подставляем: ……

- площади эпюр моментов;

an , bn+1 – расстояние от центров тяжести этих эпюр. Умножим правую и левую части на 6EIc получаем:

Уравнение 3-х моментов в общем виде. Если I=const

В уравнениях неизвестными являются т.е. для расчёта неразрезной балки необходимо составить столько уравнений трёх моментов, сколько промежуточных опор, решая совместно внешним силам.

Если конец защемлён, для применения уравнения трёх моментов вводим дополнитьельный фиктивный пролёт. Для опоры ‘o’ составляем уравнения:

При отсутствии внешней нагрузки на крайнем 1-м пролёте у защемлённого конца:
44. Решение системы ДУ с конечным числом степеней свободы. Вековое уравнение.

Рассмотрим балку несущую n сосредоточенных масс, совершающих свободные колебания в вертикальной плоскости. Число степеней свободы = n. Х1, Х2, Х3 … Хn – силы инерции; у1, у2, у3 … уn – отклонение масс; А1, А2, А3 … Аn – амплитуды.

Уравнения движения масс:

Сила инерции К – ой массы:

Подставим:

Разделим всё на и обозначим ;

Система уравнений будет выглядеть:

Эта система уравнений имеет не нулевое решение , если определитель составленный из коэффициентов при енизвестных у1…уn.

Вековое уравнение:

Раскрываем определитель и получаем полином степени n относительно

Все корни этого уравнения положительны и у всех своя частота:

; .

Совокупность частот – спектр.

Систему уравнений можно записать в математическом виде (вековое уравнение) , где

;

Е – единичная матрица.

Решение с числом степеней свободы более 2 – 3 затруднительно.


– Конец работы –

Эта тема принадлежит разделу:

Устойчивость круговой бесшарнирной арки под действием радиальной нагрузки.

На сайте allrefs.net читайте: Устойчивость круговой бесшарнирной арки под действием радиальной нагрузки....

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Энергетический метод исследования устойчивости.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Устойчивость круговой бесшарнирной арки под действием радиальной нагрузки.
(1), где

Расчет двухшарнирной арки с затяжкой
Построим эпюры изгибающих моментов в сечении арки. Влиянием продольной и поперечной силы в арке пренебрегаем.

Расчет рам методом сил на действие температуры и смещение опор
При изменении в статически неопределимых системах все элементы работают в пределах упругих деформаций от совокупности н

Расчет рам на устойчивость методом перемещений. Основные допущения
Основная система при расчете рамы на устойчивость выбирается так же как и на прочность. Но при расчете на устойчивость внешняя нагрузка всегда приложена в узлах. Канонические уравнения как и в мето

Математическая форма расчета рам методом перемещений
Для раз кинематически неопределимой системы канонических уравнений имеет вид системы

Значение устойчивости сжатых стержней в изогнутости балок и других элементов в решении надежности сооружений.
При проектировании инженерных сооружений часто бывает недостаточно обычных методов расчета на прочность. Чтобы получить полное представление о надежности сооружения в особенности это относится к та

Потеря устойчивости I рода
При потери устойчивости формы нарушается условие равновесия между внешними и внутренними силами, соответствующими первоначальному виду деформации.. Потерю устойчивости, связанную с разветвлением фо

Определение частоты колебаний балочной фермы
/ Способ перехо

Определение коэффицентов при неизвестных метода сил.
Коэффициенты при неизвестных яв

Общие свойства статически неопределимых систем. Степень статической неопределимости. Основная система метода сил.
Статически неопределимая система – это система, определение усилий в которой невозможно с помощью одних лишь уравнений статики. Сооружения могут быть неопределимыми по своему внутреннему о

Приближенные способы определения частот свободных колебаний. Энергетический способ.
Приближение точных приемов для систем с числом степеней свободы более 3-х связаны с громоздкими вычислениями, к-е значительно усложняется при учете собственного веса. Это обстоятельство заставляет

Определение перемещений в стат-ки опред. сист-ах от осадки опор.
Перемещения от случайных осадок опор. Осадки опор могут быть случайными вызванными просадкой грунта, размывом, оползнем и др. причинами). При отсутствии нагрузки на сооружение осадки могут возникну

Динамический расчет системы методом перемещений.
  Порядок расчета: 1. Анализируем схему и выбираем основную систему. 2. Строится изгибающий момент.

Метод исследования устойчивости упругих систем.
В задачах устойчивости используют энергетический и статический метод (есть еще динамический, но он редко применяется). Статический метод – заключается в составлении и интегрировании ДУ равно

Статический способ определения коэффициентов и свободных членов системы уравнений в методе перемещений.
Необходимо построить эпюру изгибающих моментов в основной системе от нагрузки и от единичных неизвестных перемещений. Эпюру Мр для левой стойки построим, как для балки с 2-мя заделанными концами, а

Расчет параболических арок.
Аналитический расчет арок: для арки с опорами на одном уровне опорные реакции раскладываются вертикальные и горизонтальные – распор H. Вертикальные составляющие VA=VB.

Свободные колебания системы с одной степенью свободы. Вывод дифференциального уравнения.
Самая простая задача колебания с одной степенью свободы являются колебания невесомого стержня с приложенной массой. у – отклонения от статического равновесия сил.

Построение эпюр изгибающих моментов и поперечных сил для неразрезных балок. Построение объемлющих эпюр.
Если у балки загружен 1-й пролет, то при помощи фокусных отношений очень просто и быстро определяются все опорные моменты.

Устойчивость круговой двух шарнирной арки под действием радиальной нагрузки.
При f<l/10 рассматриваем только кососимметричную форму деформации.

Определение частот колебаний балочной фермы с сосредоточенными силами(переход к эквивалентной балке)
  Способ перехода к эквивалентной балке состоит в том, что ферма заменяется ба

Расчет рам смешанным способом.
При смешанном методе расчета часть неизвестных представляет собой усилия – силы, моменты (как при расчете методом сил), а другая часть – перемещения – повороты, поступательные смещения (как при рас

Общий способ определения коэф-ов и свободных членов системы канонич. ур-ий метода перемещений.
Основная система метода перемещений получается путем введения дополнительных связей и появлению реактивных моментов во введенных заделках и реактивных сил в дополнительных стержнях. Эти дополн реак

Динамический расчет системы
Этот расчет можно производить используя как МС так и МП Основ сист задается путем наложения связей с

Основные формы потери устойчивости
При потере устойчивости формы наруш условия равновесия между внеш и внутр силами, соответст первоначальному виду деформации. Потерю уст, связанную с разветвлением форм равновесия, назыв потерей уст

Степень свободы в динамике сооружений.
Степень свободы – это число независимых координат, определяющих положение масс движ вместе с сист всевозмож упругих и упругопластич перемещениях в сист-х. Чмсло степеней свободы удобно определять к

Устойчивость стержня с упругой заделкой на одном конце и свободным другим концом
Схема потери уст. Податливость опоры харак парм a- углом поворота от дейст единич момента М=1. Применяя стат метод, сос

Расчет неразрезных балок методом фокусов определение опорных моментов с помощью моментных фокусных отношений.
Установлено что в каждом ненагруженном пролете при положении нагрузки справа (или слева) от него эпюра моментов имеет нулевую точку, причем местоположении этой точки постоянно и не зависит от интен

Резонансное явление, коэф динамичности при вынуждаемых колеб-х без учета сил сопротивления.
Вынужденные колебания

Вынужденные колебания системы с конечным числом степеней свободы
Число возмож форм колеб упругой сист = числу степеней свободы. Каждой форме колеб соотв своя частота. Число степ свободы упругой сист опред числом возможных независимых смещений. Для того чтобы уст

Матричная форма расчета арок
Трехшарнирные арки в матр-ой форме проще рассчитывать с использованием преобразрования базиса нагр-ки. Для трехшарнирной арки с пароболическим очертанием оси

В этом месте пробел в шпоре
Для состав-я матрицы рассчитываем арку на самоуравнев-ю нагр-ку. Эпюры изгиб-х моментов будут локальными с единич-ой ор

Период, круговая частота свободных колебаний с одной степ свободы. Техническая частота.
Периодом колебания Т называется время одного колебания. Период тригонометрических функций равен 2π. Отсюда

Комбинированный способ расчета рам.
Комбинир способ прим как для симметричных так и для не симметричных рам. В этом случае один из методов расчета(напр МС) яв-ся основным, а другой(МП) – вспомогательный, или наоборот. Если в кач-ве о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги