Потеря устойчивости I рода - раздел Строительство, Устойчивость круговой бесшарнирной арки под действием радиальной нагрузки. При Потери Устойчивости Формы Нарушается Условие Равновесия Между Внешними И ...
При потери устойчивости формы нарушается условие равновесия между внешними и внутренними силами, соответствующими первоначальному виду деформации.. Потерю устойчивости, связанную с разветвлением форм равновесия, называется потерей устойчивости I рода. Характеризуется при постоянном возрастании нагрузки, разрушения прежней формы деформации, качественно отличное от прежней. К таким нарушениям относятся потеря устойчивости центрального сжатия, потеря устойчивости формы деформации, потеря устойчивости плоской формы, потеря устойчивости плоской формы изгиба.
Предельное значение нагрузки при которых становится возможным возникновение деформаций нового типа назначают критическую нагрузку для данного сооружения. Состояние сооружения при котором происходит потеря устойчивости прежней формы деформации называется критическим состоянием I-го рода.
На сайте allrefs.net читайте: Устойчивость круговой бесшарнирной арки под действием радиальной нагрузки....
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:
Потеря устойчивости I рода
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Расчет рам на устойчивость методом перемещений. Основные допущения
Основная система при расчете рамы на устойчивость выбирается так же как и на прочность. Но при расчете на устойчивость внешняя нагрузка всегда приложена в узлах. Канонические уравнения как и в мето
Определение перемещений в стат-ки опред. сист-ах от осадки опор.
Перемещения от случайных осадок опор. Осадки опор могут быть случайными вызванными просадкой грунта, размывом, оползнем и др. причинами). При отсутствии нагрузки на сооружение осадки могут возникну
Метод исследования устойчивости упругих систем.
В задачах устойчивости используют энергетический и статический метод (есть еще динамический, но он редко применяется). Статический метод – заключается в составлении и интегрировании ДУ равно
Расчет параболических арок.
Аналитический расчет арок: для арки с опорами на одном уровне опорные реакции раскладываются вертикальные и горизонтальные – распор H.
Вертикальные составляющие VA=VB.
Расчет рам смешанным способом.
При смешанном методе расчета часть неизвестных представляет собой усилия – силы, моменты (как при расчете методом сил), а другая часть – перемещения – повороты, поступательные смещения (как при рас
Динамический расчет системы
Этот расчет можно производить используя как МС так и МП
Основ сист задается путем наложения связей с
Основные формы потери устойчивости
При потере устойчивости формы наруш условия равновесия между внеш и внутр силами, соответст первоначальному виду деформации. Потерю уст, связанную с разветвлением форм равновесия, назыв потерей уст
Степень свободы в динамике сооружений.
Степень свободы – это число независимых координат, определяющих положение масс движ вместе с сист всевозмож упругих и упругопластич перемещениях в сист-х. Чмсло степеней свободы удобно определять к
Вынужденные колебания системы с конечным числом степеней свободы
Число возмож форм колеб упругой сист = числу степеней свободы. Каждой форме колеб соотв своя частота. Число степ свободы упругой сист опред числом возможных независимых смещений. Для того чтобы уст
Матричная форма расчета арок
Трехшарнирные арки в матр-ой форме проще рассчитывать с использованием преобразрования базиса нагр-ки. Для трехшарнирной арки с пароболическим очертанием оси
В этом месте пробел в шпоре
Для состав-я матрицы рассчитываем арку на самоуравнев-ю нагр-ку. Эпюры изгиб-х моментов будут локальными с единич-ой ор
Комбинированный способ расчета рам.
Комбинир способ прим как для симметричных так и для не симметричных рам. В этом случае один из методов расчета(напр МС) яв-ся основным, а другой(МП) – вспомогательный, или наоборот. Если в кач-ве о
Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Новости и инфо для студентов