Реферат Курсовая Конспект
Ранговая корреляция - раздел Математика, Оглавление Введение….3 Правила Выполнения Ранжирования… 6 Примеры….7 Методик...
|
ОГЛАВЛЕНИЕ Введение….3 Правила выполнения ранжирования… 6 Примеры….7 Методика расчёта коэффициента корреляции рангов Спирмэна……….9 Примеры … 11 Приложение….16 Список литературы….17 ВВЕДЕНИЕ Исследуя природу, общество, экономику, психологию необходимо считаться с взаимосвязью наблюдаемых процессов и явлений.При этом полнота описания, так или иначе, определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а так же воздействие одних факторов на другие является одной из основных задач статистики.
Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции. Функциональная связь достаточно часто проявляется в физике, химии.
В экономике примером такой зависимости может служить прямо пропорциональная зависимость между производительностью труда и увеличением производства продукции. Корреляционная связь (которую так же называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтённые случайные величины.
Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределённые в некотором интервале значения функции. Например, некоторое увеличение аргумента повлечёт за собой лишь среднее увеличение (или уменьшение) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего значения. Такие зависимости встречаются повсеместно.
Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесённых удобрений. Очевидно, что удобрения участвуют в формировании урожая. Но для каждого конкретного поля одно и тоже количество внесённых удобрений, вызовет разный прирост урожайности. Так как во взаимодействии находится ещё целый ряд факторов (погода, состояние почвы и другие факторы), которые и формируют конечный результат. Однако в среднем такая связь наблюдается – увеличение массы внесённых удобрений, ведёт к росту урожайности.
В наиболее общем виде задача статистики в психологических и иных исследованиях, в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а так же характеристике силы и формы влияния одних факторов на другие факторы. По направлению связи бывают прямыми, когда зависимая переменная растёт с увеличением факторного признака, и обратными, когда рост факторного признака сопровождается уменьшением функции.
Относительно своей аналитической формы связи бывают линейными и нелинейными. В первом случае между признаками в среднем проявляются линейные соотношения. Нелинейная взаимосвязь выражается нелинейной функцией, а переменные связаны между собой в среднем не линейно. Существует ещё одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то её принято называть парной регрессией. Если изучаются более чем две переменные – множественной регрессией.
Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе различных исследований. Но кроме перечисленных связей различают также непосредственные, косвенные и ложные связи. Собственно, суть каждого из них очевидна из названия связей. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие, какой – то третьей переменной, которая опосредует связь между изучаемыми признаками.
Ложная связь – это связь, установленная формально и, как правило, подтверждённая только количественными оценками. Эта связь не имеет под собой качественной основы или же бессмысленна. По силе различают слабые и сильные связи. Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей. Для решения задач корреляционно-регрессионного анализа применяются две группы методов, одна группа включает в себя методы корреляционного анализа, а другая группа включает в себя методы регрессионного анализа.
В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнение при интерпретации результатов исследований. В данном реферате я остановлюсь на методе оценки тесноты связи, как между количественными, так и между качественными признаками изучаемых явлений.
Рассмотрим некоторые примеры. ПРИМЕРЫ Пример 1. Номер Денежный доход, тыс. руб. руб.
Методика расчёта коэффициента корреляции рангов Спирмэна.
– Конец работы –
Используемые теги: Ранговая, Корреляция0.028
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Ранговая корреляция
Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Твитнуть |
Новости и инфо для студентов