Дополнительное интегральное условие для первого приближения
Работа сделанна в 2006 году
Дополнительное интегральное условие для первого приближения - раздел Физика, - 2006 год - Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты Дополнительное Интегральное Условие Для Первого Приближения. Усредним Равенст...
Дополнительное интегральное условие для первого приближения. Усредним равенство 1.5.15 по z в пределах несущего пласта согласно . 1.5.80 Последовательно для каждого слагаемого , 1.5.81 , 1.5.82 1.5.83 Окончательно, после усреднения, получим следующую постановку задачи осреднённого по несущему пласту поля плотностей загрязнителя 1.5.84 1.5.85 . 1.5.86 Условия сопряжения, начальные и граничные условия при этом принимают вид , 1.5.87 , 1.5.88 1.5.89 1.5.90 Полученная задача совпадает с задачей 1.5.51 - 1.5.57 для нулевого приближения плотности загрязнителя. В силу единственности решения следует, что. Аналогичное соотношение получается при усреднении параметризованной задачи 1.5.22 - 1.5.29 . Покажем это. Усреднение производных по времени и радиальной координате совпадает с предыдущим , 1.5.91 . 1.5.92 Производная по вертикальной координате z содержит дополнительный множитель, который сокращается при использовании условия сопряжения для производных, поэтому в итоге получим выражение, совпадающее с предыдущим 1.5.93 Окончательно после усреднения параметризованной задачи получим следующую постановку задачи 1.5.94 1.5.95 , 1.5.96 , 1.5.97 , 1.5.98 1.5.99 1.5.100 которая полностью совпадает с предыдущей и с задачей для нулевого приближения поля плотностей загрязнителя.
Совпадение усредненных значений исходной и параметризованной задачи существенно выделяет используемую в данной работе параметризацию от произвольной, которая почти всегда приводит к зависимости усредненных значений от параметра асимптотического разложения. Совпадение задач для усредненных значений параметризованной и для нулевого приближения, как и выше, в силу единственности решения позволяет утверждать, что. Далее процедура усреднения по z асимптотического представления параметризованной задачи 1.5.30 в пласте на линии r 0 приводит к следующему равенству Отсюда с учетом следует, что средние по толщине пласта значения коэффициентов разложения первого и более высоких порядков равны нулю . 1.5.101 Установление равенства нулевого приближения и средних значений исходной и параметризованной задачи имеет принципиальное значение для решения температурной задачи, поскольку входящую в правую часть уравнения 1.4.43 среднюю плотность можно заменить на равное ей нулевое приближение.
Это использовано при решении задачи теплопереноса в пункте 3.1. При решении задачи массопереноса в первом приближении 1.5.73 - 1.5.79 , возникает необходимость использования дополнительного интегрального условия 1.5.101 , поскольку условие 1.5.79 является избыточным и должно быть заменено 1.5.101 . Если потребовать выполнения этого интегрального условия при любых значениях r, то оно также оказывается избыточным.
Для построения аналитического решения достаточно заданий интегрального условия на одной поверхности для заданного значения r. Ранее показано, что наилучшим первое приближение является в случае, когда поверхность осреднения совпадает с поверхностью, на которой заданы граничные условия. 1.6. Выводы В главе I на основе уравнения конвективной диффузии для несжимаемой жидкости с учетом радиоактивного распада и обмена загрязнителя со скелетом, осуществлена постановка термодиффузионной задачи о взаимосвязанных полях концентрации и температуры в глубокозалегающих горизонтах, возникающих при закачке в пористый пласт растворенных радиоактивных веществ.
С использованием параметра асимптотического разложения температурная и диффузионная задачи представлены в виде бесконечной последовательности краевых задач для коэффициентов разложения искомого решения в асимптотический ряд. Произведено расцепление соответствующей цепочки уравнений и на этой основе осуществлена постановка краевых задач смешанного типа со следами производных из внешних областей для нулевого и первого коэффициентов разложения.
При построении решения задачи для первого коэффициента использовано нелокальное граничное условие, заключающееся в том, что средние значения температуры и плотности примесей по толщине пласта на оси скважины равны нулю. Глава II. РЕШЕНИЕ ЗАДАЧИ МАССОПЕРЕНОСА В НУЛЕВОМ И ПЕРВОМ ПРИБЛИЖЕНИЯХ, СТАЦИОНАРНОЕ РЕШЕНИЕ 2.1.
Поэтому чрезвычайно важной экологической задачей является прогнозирование и контроль поведения зон, охваченных воздействием вредных примесей,… Указанный прогноз осуществляется, в основном, расчётным путём, так как… При закачке вредных примесей нарушается естественное температурное поле, что определяется как отличием температуры…
СПИСОК ОБОЗНАЧЕНИЙ
СПИСОК ОБОЗНАЧЕНИЙ. a -коэффициент температуропроводности, м2 с -удельные теплоёмкости пластов, Дж кг К -коэффициенты диффузии в вертикальном и радиальном направлениях, м2 с h -полувысота пористого
Разложение задачи теплопереноса по асимптотическому параметру
Разложение задачи теплопереноса по асимптотическому параметру. Рассмотрим более общую задачу, получающуюся введением произвольного асимптотического параметра путем формальной замены на и, соответст
Постановка задачи теплопереноса в первом приближении
Постановка задачи теплопереноса в первом приближении. Уравнения 1.4.27 , 1.4.28 для коэффициентов при первое приближение принимают вид , 1.4.51 . 1.4.52 Для коэффициентов при в 1.4.29 . 1.4.53 Усло
Разложение задачи массопереноса по асимптотическому параметру
Разложение задачи массопереноса по асимптотическому параметру. Рассмотрим более общую задачу, получающуюся введением произвольного асимптотического параметра путём формальной замены коэффициента ди
Математическая постановка задачи массообмена в первом приближении
Математическая постановка задачи массообмена в первом приближении. Уравнения 1.5.31 , 1.5.32 для коэффициентов первого приближения принимают вид 1.5.58 . 1.5.59 Коэффициенты при в уравнении 1.5.33
Решение задачи массопереноса в нулевом приближении
Решение задачи массопереноса в нулевом приближении. В пространстве изображений Лапласа-Карсона, для нулевого приближения вместо 1.5.51 - 1.5.57 получим следующую задачу, z 1, r 0, 2.1.1 , z 1, r 0,
Анализ результатов расчетов в нулевом приближении
Анализ результатов расчетов в нулевом приближении. На рис.2.4 показаны расчёты зависимости в нулевом приближении плотности радиоактивного загрязнителя от расстояния до оси скважины.
С увелич
Бездиффузионное приближение в задаче массообмена
Бездиффузионное приближение в задаче массообмена. В силу того, что отношение коэффициентов диффузии и температуропроводности является малой величиной порядка ? см. 1.5.12 , появляется возможность у
Решение задачи массообмена в первом приближении
Решение задачи массообмена в первом приближении. Выпишем ещё раз полученную в разделе 1.5.4 математическую постановку задачи массообмена для коэффициентов первого приближения, пренебрегая радиоакти
Анализ результатов расчетов в первом приближении
Анализ результатов расчетов в первом приближении. На рис. 2.14 и 2.15 представлены графики зависимости первого коэффициента разложения от расстояния до оси скважины.
Вид графиков для z 0 и z
Анализ результатов расчёта стационарной задачи
Анализ результатов расчёта стационарной задачи. На рис.2.34 представлены графики зависимости стационарного распределения примесей в нулевом приближении от расстояния до оси скважины.
Нулевое
Анализ результатов расчетов по нулевому приближению
Анализ результатов расчетов по нулевому приближению. На рис.3.1 показаны расчёты зависимости в нулевом приближении температуры в несущем пласте от времени для безразмерного расстояния r 20 что соот
Сопоставление радиусов зон химического и теплового возмущений
Сопоставление радиусов зон химического и теплового возмущений. При распространении загрязнителя возникает несколько фронтов, определяемых различными физическими процессами, протекающими в закачивае
Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Новости и инфо для студентов