рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Бездиффузионное приближение в задаче массообмена

Работа сделанна в 2006 году

Бездиффузионное приближение в задаче массообмена - раздел Физика, - 2006 год - Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты Бездиффузионное Приближение В Задаче Массообмена. В Силу Того, Что Отношение ...

Бездиффузионное приближение в задаче массообмена. В силу того, что отношение коэффициентов диффузии и температуропроводности является малой величиной порядка ? см. 1.5.12 , появляется возможность упростить взаимосвязанную задачу тепломассопереноса, рассмотрев бездиффузионное приближение, суть которого заключается в пренебрежении диффузионными слагаемыми в соответствующей задаче массопереноса.

Преимущество такого подхода в значительном упрощении процедуры построения решения тепломассообменной задачи.

Однако, при использовании бездиффузионного приближения необходимо разрешение вопросов, связанных с оценкой его применимости.

Рассматривая найденное нами выражение для 2.1.52 как функцию от, разложим его в ряд Маклорена по малому параметру, причём ограничимся первыми двумя членами разложения . 2.3.1 Из 2.2.1 , учитывая, что, получим . 2.3.2 Далее, вычислив производную 2.3.3 и подставляя 2.3.2 и 2.3.3 в 2.3.1 , окончательно получим . 2.3.4 В случае бездиффузионного приближения в уравнении 1.5.41 сразу пренебрегаем диффузионной составляющей, и оно принимает вид 2.3.5 или, проведя преобразование Лапласа - Карсона, в пространстве изображений . 2.3.6 Решение этого уравнения в пространстве оригиналов , 2.3.7 что совпадает с нулевым приближением по для задачи массопереноса с учётом вертикальной диффузии.

Относительная погрешность, возникающая при пренебрежении вторым слагаемым в квадратных скобках в выражении 2.3.4 , и определяет погрешность бездиффузионного приближения . 2.3.8 Анализ рис.2.9, на котором показана зависимость относительной погрешности бездиффузионного приближения от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, показывает, что за время 30 лет погрешность данного приближения на расстояниях до 0,9Rd не превышает нескольких процентов и лишь для значительных времён 300 лет, на расстояниях бoльших 0,7Rd становится существенной.

Причём данные результаты не зависят от среднего времени жизни нуклида. Рис. 2.9. Зависимость относительной погрешности бездиффузионного приближения от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, при различных временах закачки 1-t 0.1, 2-1, 3-10, 4-100. Pd 102, Если при расчётах полагать, что, то на расстояниях до 0,9Rd для ?300 лет погрешность бездиффузионного приближения не превышает 5 . Это позволяет во многих практических задачах использовать бездиффузионное приближение.

Расстояние от скважины, на котором можно пользоваться бездиффузионным приближением, естественно назвать радиусом бездиффузионного приближения. Аналогично можно ввести понятие время бездиффузионного приближения. На рис. 2.10 приведены результаты расчётов плотности радиоактивных примесей для бездиффузионного приближения в зависимости от относительного расстояния до скважины.

Параметр Pd при расчётах принимался равным 102. Рис. 2.10. Зависимость относительной погрешности бездиффузионного приближения от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, при различных временах закачки 1-t 0.1, 2-1, 3-10, 4-100. Pd 102, Кривые, приведённые на рис. 2.11рассчитаны для значения безразмерного времени t 10. При отсутствии диффузии уменьшение концентрации загрязнителя происходит только в результате радиоактивного распада.

Поэтому в случае Аt 0 плотность постоянна па всём участке вплоть до фронта загрязнителя положение которого задаётся функцией Хевисайда, где скачком падает до нуля кривая 1 . Вид кривых 2 - 4 определяется радиоактивным распадом.

Рис. 2.11. Зависимость плотности радиоактивных примесей от расстояния до оси скважины, отнесённого к радиусу зоны загрязнения для безразмерного времени t 10 при различных постоянных распада 1-At 0, 2-0.01, 3-0.1, 4-1. Pd 102, 2.4.

– Конец работы –

Эта тема принадлежит разделу:

Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты

Поэтому чрезвычайно важной экологической задачей является прогнозирование и контроль поведения зон, охваченных воздействием вредных примесей,… Указанный прогноз осуществляется, в основном, расчётным путём, так как… При закачке вредных примесей нарушается естественное температурное поле, что определяется как отличием температуры…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Бездиффузионное приближение в задаче массообмена

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СПИСОК ОБОЗНАЧЕНИЙ
СПИСОК ОБОЗНАЧЕНИЙ. a -коэффициент температуропроводности, м2 с -удельные теплоёмкости пластов, Дж кг К -коэффициенты диффузии в вертикальном и радиальном направлениях, м2 с h -полувысота пористого

Некоторые аспекты развития методов расчётов температурных и концентрационных полей в пластах
Некоторые аспекты развития методов расчётов температурных и концентрационных полей в пластах. Закачка растворов радиоактивных примесей в глубоко залегающие пористые пласты создает необходимость рас

Основные физические процессы при фильтрации жидкости в глубоко залегающих пластах
Основные физические процессы при фильтрации жидкости в глубоко залегающих пластах. Построение механики смесей осуществлено на основе физических законов сохранения массы, импульса и энергии.

Уравнение конвективной диффузии с учетом радиоактивного распада и обмена жидкости со скелетом
Уравнение конвективной диффузии с учетом радиоактивного распада и обмена жидкости со скелетом. Постановка задачи о распределении концентрации вредных примесей при закачке растворов в глубоко залега

Математическая постановка задачи теплопереноса и её обезразмеривание
Математическая постановка задачи теплопереноса и её обезразмеривание. Рассмотрим задачу о распространении радиоактивных примесей в пористом глубоко залегающем пласте, в который закачивается жидкост

Разложение задачи теплопереноса по асимптотическому параметру
Разложение задачи теплопереноса по асимптотическому параметру. Рассмотрим более общую задачу, получающуюся введением произвольного асимптотического параметра путем формальной замены на и, соответст

Математическая постановка задачи теплопереноса в нулевом приближении
Математическая постановка задачи теплопереноса в нулевом приближении. Из 1.4.29 для коэффициентов при нулевое приближение получим, тогда. Таким образом, в нулевом приближении температура загрязните

Постановка задачи теплопереноса в первом приближении
Постановка задачи теплопереноса в первом приближении. Уравнения 1.4.27 , 1.4.28 для коэффициентов при первое приближение принимают вид , 1.4.51 . 1.4.52 Для коэффициентов при в 1.4.29 . 1.4.53 Усло

Математическая постановка задачи массопереноса и её обезразмеривание
Математическая постановка задачи массопереноса и её обезразмеривание. Геометрия задачи массопереноса практически ничем не отличается от температурной задачи и представлена на рис. 1.2. Рис. 1.2. Ге

Разложение задачи массопереноса по асимптотическому параметру
Разложение задачи массопереноса по асимптотическому параметру. Рассмотрим более общую задачу, получающуюся введением произвольного асимптотического параметра путём формальной замены коэффициента ди

Математическая постановка задачи массопереноса в нулевом приближении
Математическая постановка задачи массопереноса в нулевом приближении. Приравнивая коэффициенты при сомножителях нулевое приближение в уравнении 1.5.33 , получим , 1.5.39 а, следовательно, после инт

Математическая постановка задачи массообмена в первом приближении
Математическая постановка задачи массообмена в первом приближении. Уравнения 1.5.31 , 1.5.32 для коэффициентов первого приближения принимают вид 1.5.58 . 1.5.59 Коэффициенты при в уравнении 1.5.33

Дополнительное интегральное условие для первого приближения
Дополнительное интегральное условие для первого приближения. Усредним равенство 1.5.15 по z в пределах несущего пласта согласно . 1.5.80 Последовательно для каждого слагаемого , 1.5.81 , 1.5.82 1.5

Решение задачи массопереноса в нулевом приближении
Решение задачи массопереноса в нулевом приближении. В пространстве изображений Лапласа-Карсона, для нулевого приближения вместо 1.5.51 - 1.5.57 получим следующую задачу, z 1, r 0, 2.1.1 , z 1, r 0,

Анализ результатов расчетов в нулевом приближении
Анализ результатов расчетов в нулевом приближении. На рис.2.4 показаны расчёты зависимости в нулевом приближении плотности радиоактивного загрязнителя от расстояния до оси скважины. С увелич

Решение задачи массообмена в первом приближении
Решение задачи массообмена в первом приближении. Выпишем ещё раз полученную в разделе 1.5.4 математическую постановку задачи массообмена для коэффициентов первого приближения, пренебрегая радиоакти

Анализ результатов расчетов в первом приближении
Анализ результатов расчетов в первом приближении. На рис. 2.14 и 2.15 представлены графики зависимости первого коэффициента разложения от расстояния до оси скважины. Вид графиков для z 0 и z

Стационарное решение задачи массопереноса в нулевом и первом приближении
Стационарное решение задачи массопереноса в нулевом и первом приближении. Отметим, что чрезвычайно важным является нахождение стационарного решения, позволяющего установить максимальные размеры зон

Анализ результатов расчёта стационарной задачи
Анализ результатов расчёта стационарной задачи. На рис.2.34 представлены графики зависимости стационарного распределения примесей в нулевом приближении от расстояния до оси скважины. Нулевое

Глава III. РЕШЕНИЕ ЗАДАЧИ ТЕПЛОПЕРЕНОСА В НУЛЕВОМ И ПЕРВОМ ПРИБЛИЖЕНИЯХ
Глава III. РЕШЕНИЕ ЗАДАЧИ ТЕПЛОПЕРЕНОСА В НУЛЕВОМ И ПЕРВОМ ПРИБЛИЖЕНИЯХ. Нулевое приближение Постановка задачи теплопереноса для нулевого приближения представлена в разделе 1.4 в виде 1.4.44 - 1.4.

Анализ результатов расчетов по нулевому приближению
Анализ результатов расчетов по нулевому приближению. На рис.3.1 показаны расчёты зависимости в нулевом приближении температуры в несущем пласте от времени для безразмерного расстояния r 20 что соот

Решение задачи теплообмена в пространстве изображений в первом приближении
Решение задачи теплообмена в пространстве изображений в первом приближении. Постановка первого приближения задачи теплообмена была осуществлена в 1.4.4. Выпишем полученные там уравнения ещё раз, пе

Сопоставление радиусов зон химического и теплового возмущений
Сопоставление радиусов зон химического и теплового возмущений. При распространении загрязнителя возникает несколько фронтов, определяемых различными физическими процессами, протекающими в закачивае

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги