ПОСТАНОВКА ЗАДАЧИ АНАЛИЗА ОБЪЕКТОВ С СОСРЕДОТОЧЕННЫМИ ПАРАМЕТРАМИ - раздел Механика, МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕХНИЧЕСКИХ ОБЪЕКТОВ Использование Мм Объекта В Виде Системы Дифференциальных Уравнений В Частных ...
Использование ММ объекта в виде системы дифференциальных уравнений в частных производных можно только для очень простых технических систем, и даже в этом случае порядок аппроксимирующей алгебраической системы уравнений при моделировании в трехмерном пространстве может достигать 106 и более. Поэтому при моделировании на макроуровне в технической системе выделяются достаточно крупные элементы, которые в дальнейшем рассматриваются в виде неделимой единицы. Непрерывной независимой переменной остается (в сравнении с моделированием на микроуровне) только время. Математической моделью технической системы на макроуровне будет система ОДУ.
Поведение большинства технических подсистем; можно охарактеризовать с помощью фазовых переменных. Фазовые переменные образуют вектор неизвестных в ММ технической системы. В электрической подсистеме фазовыми переменными являются токи и напряжения, в механической поступательной подсистеме – силы и скорости.
Математическую модель системы получают объединением компонентных и топологических уравнений.
Законы функционирования элемента подсистемы (элемента) задаются компонентными уравнениями, связывающими, как правило, разнородные фазовые переменные, относящиеся к данному элементу, т. е. компонентные уравнения связывают переменные типа потока с переменными типа потенциала.
Компонентные уравнения могут быть линейными или нелинейными, алгебраическими, обыкновенными дифференциальными или интегральными. Эти уравнения получаются на основе знаний о конкретной предметной области. Для каждого элемента моделируемого технического объекта должны быть получены компонентные уравнения. Это может оказаться длительной и трудоемкой процедурой, выполняющейся однократно с одновременным накоплением библиотеки подпрограмм моделей элементов.
Примечание. Для большинства элементов такие компонентные уравнения уже получены в прикладных дисциплинах. Ими можно воспользоваться при моделировании в САПР. Например, в гидравлике для дросселя имеется аналитическое выражение, связывающее расход и давление (это компонентное уравнение дросселя).
Компонентные уравнения получают либо теоретически, либо физическим макетированием, либо математическим моделированием на микроуровне.
Связь между однородными фазовыми переменными, относящимися к разным элементам подсистемы, задается топологическими уравнениями, получаемыми на основе сведений о структуре подсистемы. Для формирования тологических уравнений разработаны формальные методы и процедура получения топологических уравнений выполняется для каждого моделируемого объекта, так как структуры объектов различны.
В САПР целесообразно использовать математические программные средства, обеспечивающие моделирование всей номенклатуры проектируемых объектов и способные адаптироваться к изменяющимся условиям эксплуатации. Эти свойства достигаются, если применяемые средства имеют высокую степень универсальности. Получению универсальных средств способствует использование аналогий между подсистемами различной физической природы и между моделирующими их компонентами и топологическими уравнениями.
Все темы данного раздела:
ТЕХНИЧЕСКИХ ОБЪЕКТОВ
ВВЕДЕНИЕ. 2
1 КЛАССИФИКАЦИЯ И МЕТОДЫ ПОЛУЧЕНИЯ ММ.. 3
1.1 Классификация математических моделей. 3
1.2 Методы получения ММ... 6
1.3 Требования к м
Методы получения ММ
Основными методами получения ММ объектов на макроуровне являются:
· Обобщенный метод;
· Табличный метод;
· Узловой метод;
· Метод переменных состояний.
Требования к математическим моделям и численным методам в САПР
К математическим моделям предъявляются требования универсальности, адекватности, точности и экономичности.
Степень универсальности ММ характеризует полноту отображения в модели свой
Методика получения математических моделей элементов
В общем случае процедура получения математических моделей элементов включает в себя следующие операции:
1. Выбор свойств объекта, которые подлежат отражению в модели. Этот выбор основан на
Постановка задачи
Математические модели на микроуровне, называемым распределенными, представлены дифференциальными уравнениями в частных производных вместе с краевыми условиями. Проектирование м
Краевые условия
Уравнения (1.2), (1.4), (1.6), (1.7) имеют множество решений. Для получения единственного решения необходимо задавать краевые условия (сведения об искомых непрерывных функциях на границах ра
Приближенные модели объектов на микроуровне
Точное решение краевых задач удается получить лишь для немногих частных случаев. Поэтому общий способ их решения, в том числе и в САПР, заключается в использовании различных приближенных моделей. В
Метод конечных разностей
В САПР решение дифференциальных или интегро-дифференциальных уравнений с частными производными выполняется численными методами. Эти методы основаны на дискретизации независимых переменных - их пред
Построение сетки в заданной области
В МКР пользуются, как правило, регулярные сетки, шаг которых либо постоянен, либо меняется по несложному закону. Ниже на рис. 1 приведен пример построения сеток в МКР.
Для одномерных облас
Метод конечных элементов
В настоящее время метод конечных элементов (МКЭ) является одним из наиболее популярных методов решения краевых задач в САПР. В математическом отношении метод относится к группе вариационно-разностн
Метод, основанный на вариационной постановке задачи
Метод, основанный на вариационной постановке задачи, требует минимизации некоторого специально подобранного функционала, который связан с физическим смыслом задачи. Подбор функционала являет
Метод Галеркина
Метод Галеркина - другой широко известный метод вычисления вектора узловых значений - представляет собой частный случай более общего метода взвешенных невязок. Основным преимуществ
Метод граничных элементов
При решении краевых задач приближенные модели технических объектов можно строить на основе интегральных уравнений. При этом первый шаг на пути к решению состоит в переходе от дифференциальных уравн
Переход от исходного дифференциального уравнения интегральному
Рассмотрим на простом примере алгоритм перехода. В двухмерной однородной области произвольной формы с коэффициентом проницаемости k требуется найти распределение функции
Дискретизация границы рассматриваемой области
Для приближенного решения (5) производится дискретизация границы рассматриваемой области. Аналогично МКЭ разбиение границы на элементы можно производить различными способами. В простейшем случае гр
Аналогии компонентных уравнений
В большинстве технических систем можно выделить три типа простейших элементов:
A. Элемент типа R - элемент диссипации энергии. На этом элементе, как правило, происходит преобразован
Электрическая подсистема
Фазовыми переменными электрической подсистемы являются токи I и напряжения U. Запишем уравнения трех типов простейших элементов:
A. Уравнение сопротивления (закон Ома)
Механическая поступательная подсистема
Фазовые переменные механической поступательной подсистемы - силы F и скорости V - соответственно аналоги токов и напряжений. Запишем уравнения трех типов простейших элементов:
Механическая вращательная подсистема
Фазовые переменные этой подсистемы - моменты сил М и угловые скорости - соответ
Гидравлическая (пневматическая) подсистема
Фазовые переменные гидравлической подсистемы – массовые расходы Qm и давления Р - соответственно аналоги токов и напряжений. Запишем уравнения трех типов простейших элемент
Тепловая подсистема
Фазовые переменные этой подсистемы - тепловые потоки Ф и температура Т - соответственно аналоги токов и напряжений. Запишем уравнения трех типов простейших элементов:
А. Из с
Электрическая подсистема
Связи между отдельными элементами этой подсистемы устанавливаются на основе законов Кирхгофа.
Уравнение первого закона Кирхгофа устанавливает равенство нулю суммы токов в узлах схемы, т. е
Механическая поступательная подсистема
Аналогом уравнения первого закона Кирхгофа является уравнение принципа Даламбера: сумма сил, действующих на тело, включая инерционные, равна нулю, т. е.
Механическая вращательная подсистема
Аналогом уравнения первого, закона Кирхгофа является уравнение принципа Даламбера для вращательных подсистем, т. е.
Гидравлическая (пневматическая) подсистема
Аналогом уравнения первого закона Кирхгофа является уравнение равновесия в узлах подсистемы, т.е.
Тепловая подсистема
Аналогом уравнения первого закона Кирхгофа является уравнение равновесия в узлах подсистемы, т. е.
Эквивалентные схемы технических объектов
При получении ММ достаточно сложного технического объекта, состоящего из нескольких физических подсистем, нужно:
1) выделить в объекте однородные физические подсистемы, например механическ
Эквивалентные схемы механических поступательных подсистем
При построении эквивалентной схемы сначала в моделируемом объекте выделяют элементы, массу которых необходимо учесть. Такие элементы изображаются двухполюсниками (условное обозначение двухполюсника
Эквивалентные схемы гидравлических (пневматических) подсистем
За базовый узел при составлении эквивалентных схем таких подсистем обычно принимается внешняя среда.
Примечание. Гидравлическая и пневматическая подсистемы аналогичны.
Эквивалентные схемы электрических подсистем
Эквивалентные схемы таких подсистем практически совпадают с их принципиальными схемами, заменяются только сложные радиокомпоненты их схемами замещения, а также могут быть учтены «паразитные» элемен
Рекомендации к составлению эквивалентных схем
При составлении эквивалентных схем следует избегать последовательного соединения источника типа I и ветви типа L, а также параллельного соединения источника типа E и ветви типа
Типы связей между подсистемами различной физической природы
Ранее были рассмотрены эквивалентные схемы однородных физических подсистем. Но реальный объект представляет собой совокупность разнородных физических подсистем. Согласно основным этапам получения М
ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ
Графы в математическом обеспечении САПР используются при решении задач синтеза, особенно в конструкторском проектировании, при проектировании программного обеспечения, баз данных, при решении задач
Метод получения топологических уравнений на основе матрицы контуров и сечений
Метод, основанный на использовании информации, заключенной в М-матрице (в матрице контуров и сечений), - наиболее удобный и общий метод получения топологических уравнений.
Обобщенный метод получения математических моделей систем
Математической моделью технического объекта на макроуровне является система обыкновенных дифференциальных уравнений, в общем случае не разрешенная относительно производных, т. е.
Табличный метод получения математических моделей систем
В табличном методе в вектор базисных координат включаются переменные величины типа U и I для всех ветвей схемы. Выбор такого базиса позволяет в эквивалентной схеме иметь любые зависимые ветв
Узловой метод получения математических моделей систем
Узловой метод является популярным при создании программных комплексов анализа динамических систем. В качестве вектора базисных координат в этом методе используется вектор переменных типа узловых по
Метод переменных состояния
Базис метода переменных, характеризующих состояние системы, или более коротко - метода переменных состояния, составляют переменные типа потока через элементы типа
МАТЕМАТИЧЕСКИЕ МОДЕЛИ ТЕХНИЧЕСКИХ ОБЪЕКТОВ ДЛЯ ПОЛУЧЕНИЯ ЧАСТОТНЫХ ХАРАКТЕРИСТИК
Для многих технических объектов, описываемых системой линейных дифференциальных уравнений, необходимо получение амплитудно-частотных и фазочастотных характеристик (АЧФ и ФЧХ). Часто АЧХ и ФЧХ опред
Численный метод анализа частотных характеристик
Поскольку модель технического объекта предполагается линейной, целесообразно записать ее относительно приращений:
Метод полиномиальных коэффициентов
Так как математическая модель объекта линейна, то , где
Символический метод
Здесь большая часть действий по определению коэффициентов аi и bj производится в общем виде, т. е. выполняются операции над символическими обозначениями, в резул
МЕТОДЫ АНАЛИЗА ПОВЫШЕННОЙ ЭФФЕКТИВНОСТИ
Одновариантный анализ служит для оценки выходных параметров объектов при заданных внутренних и внешних параметрах. Он является необходимой составной частью более сложных задач много
Диакоптические методы анализа
Диакоптические методы (методы разбиения, декомпозиции) основаны на разделении сложной системы уравнений высокой размерности на более простые подсистемы с учетом связей между ними. В результа
Новости и инфо для студентов