рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - раздел Механика, МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Получим Закон Гармонических Колебаний На Примере Механического Движения Механ...

Получим закон гармонических колебаний на примере механического движения механических колебаний. Это вид колебаний, при котором тело поочерёдно и многократно совершает отклонения от своего положения равновесия в одну и другую сторону.

Рассмотрим колебания пружинного маятника вдоль горизонтальной оси при отсутствии силы сопротивления. Пружинный маятник представляет собой массивный шарик массой m, прикрепленный к пружине с ничтожно малой массой и жесткостью k. Другой конец пружины закреплен неподвижно. Если вывести шарик из равновесия и отпустить, то под воздействием силы упругости деформированной пружины система пружина–шарик придет в колебательное движение. Положение шарика на оси будем определять смещением s, т.е. расстоянием от положения равновесия до шарика (рис.1). Наша цель решить основную задачу механики – найти ответ на вопрос: где будет находиться тело в произвольный момент времени t, т.е. найти вид функции s = f(t)?

Примем за начало отсчета точку 0, в которой находится центр шарика в равновесном состоянии системы, т.е. при отсутствии деформации в пружине. Пусть в момент времени t шарик находится на расстоянии s от положения равновесия. Характер движения в данный момент времени определяется равнодействующей приложенных к шарику сил: . Т.к. трение по условию отсутствует, а сила тяжести перпендикулярна стержню, то характер движения будет определяться только силой упругости деформированной пружины:

 

. (1)

В соответствии со 2-ым законом Ньютона эта сила сообщает шарику ускорение , тогда в скалярном виде (1) можно записать:

, (2)

но т.к. a = d2s /dt2, то

. (3)

Разделим правую и левую часть (3) на m и обозначим k/m = . Сгруппировав все члены в левой части равенства, получим дифференциальное уравнение гармонических колебаний.

или . (4)

 

Это дифференциальное уравнение второго порядка с постоянными коэффициентами. Его характеристическое уравнение: к2 += 0, корни которого к1,2 = ±iω0 – мнимые числа. Тогда общим решением (4) будет:

 

s = С1cosω0t + C2sinω0t. (5)

 

Для любых С1 и С2 всегда можно подобрать другие произвольные постоянные А и φ0 такие, что С1 = Аsin φ0,1 а С2 = Аcosφ0,1, Тогда общее решение (5) примет вид:

 

s = А(sin φ0,1·cosω0t + cosφ0,1·sinω0t) = Аsin(ω0t + φ0,1). (6)

 

Если выражения для С1 и C2 поменять местами (С1 = Аcosφ0,2 а С2 = Аsin φ0,2), то общее решение будет иметь вид:

 

s = А(cos φ0,2·cosω0t + sinφ0,2·sinω0t) = Аcos(ω0t + φ0,2). (7)

 

Данные функции (6) и (7) и есть искомые кинематические уравнения гармонического колебания. Аргумент этой функции (w0t + φ0) называется фазой колебания; j0 – постоянная составляющая фазы называется начальной фазой; – собственная циклическая (круговая) частота колебаний данного пружинного маятника (, , тогда ); А – амплитуда колебаний, в данном случае максимальное значение смещения s. В общем случае, амплитуда А – это наибольшее значение величины, изменение которой с течением времени выбрали для описания изучаемых колебаний. Графики гармонического колебания представляют собой синусоиды (рис.2):

 

Получим уравнения, описывающие изменения скорости и ускорения тела, совершающего гармонические колебания. Пусть s = Аcos(ω0t + φ0), тогда:

 

, (8)

. (9)

 

Как видно, скорость и ускорение тоже изменяются по гармоническим законам, но скорость опережает по фазе смещение на p/2, а ускорение на p (рис.3), т.е. ускорение находится в противофазе со смещением. В целом, тела, на которые действуют равнодейству-ющие вида F = -ks (такие силы называются квазиупругими), будут совершать гармонические колебания.

Рассмотрим процесс колебательного движения с энергетической точки зрения. Смещая тело из положения равновесия, мы деформируем пружину, сообщая тем самым системе запас потенциальной энергии. Отпустив тело, мы даем ему возможность двигаться к положению равновесия. При этом потенциальная энергия системы превращается в кинетическую. В момент прохождения положения равновесия потенциальная энергия полностью превращается в кинетическую. Продолжая движение по инерции, тело опять деформирует пружину, т.е. кинетическая энергия начинает превращаться в потенциальную. В момент, когда кинетическая энергия полностью превратится в потенциальную, смещение достигнет амплитудного значения, тело остановится и начнет двигаться обратно. Опять потенциальная энергия будет превращаться в кинетическую и т.д. (рис.4). Т.о., с точки зрения энергетической, механическое колебание – это процесс многократных, последовательных превращений потенциальной энергии в кинетическую и обратно.

, (10)

, (11)

, (12)

 

т.е. полная энергия системы величина постоянная.

 

 

– Конец работы –

Эта тема принадлежит разделу:

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ... ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И... ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ПОНЯТИЯ
  Колебаниями называется вид движения физических тел или такие процессы, для которых характерна та или иная степень повторяемости во времени. Например, принципом

ЗАТУХАЮЩИЕ ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ
  В реальных условиях, кроме возвращающей силы в колебательной системе обязательно будет действовать и сила сопротивления. Будем считать, что скорости движения при колебаниях будут не

Колебания, которые совершаются под воздействием переменной силы, называются вынужденными.
Рассмотрим колебания под воздействием вынуждающей силы, изменяющейся по гармоническому закону:   F = F○соsωвt. (22)  

БИЕНИЯ. УРАВНЕНИЕ БИЕНИЙ
Для практики особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте w1 ≈ w2. Получим уравн

СЛОЖЕНИЕ ВЗАИМНОПЕРПЕНДИКУЛЯРНЫХ КОЛЕБАНИЙ.
  Рассмотрим случай сложения двух гармонических взаимно-перпендикулярных колебаний одинаковой частоты w, совершающихся вдоль координатных осей х и у. Для простоты, начал

СЛОЖНОЕ КОЛЕБАНИЕ И ЕГО ГАРМОНИЧЕСКИЙ СПЕКТР
Если частоты складываемых колебаний не равны друг другу ω1 ≠ ω2 , то результирующее колебание не будет гармоническим, а его амплитуда будет не постоянна. Такое

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги