рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Применение первого закона термодинамики к идеальному газу.

Применение первого закона термодинамики к идеальному газу. - раздел Химия, ФИЗИЧЕСКАЯ ХИМИЯ Рассмотрим Идеальный Газ, Т. Е. Газ, Состояние Одного Моля Которого Описывает...

Рассмотрим идеальный газ, т. е. газ, состояние одного моля которого описывается уравнением Менделеева‑Клапейрона:

(I, 39)

где — мольный объём газа, Р и Т — давление и температура соответственно.

Состояние идеального газа — это предельное состояние реальных газов при бесконечно малом давлении. Чем выше температура, тем ближе состояние реального газа к идеальному при данном давлении. Однако свойства реального газа всегда отклоняются от свойств идеального газа, так как уравнение (I, 39) является предельным законом для неосуществимого состояния, при котором давление равно нулю. В применении к реальным газам уравнение (I, 39) является приближённым, согласующимся с действительными свойствами газа тем лучше, чем меньше давление и выше температура.

Другим признаком идеального газа является его подчинение установленному опытным путем закону Гей-Люссака‑Джоуля, согласно которому внутренняя энергия идеального газа зависит только от температуры и не зависит от объёма и давления.

Экспериментальное доказательство этого закона было выполнено Джоулем. В калориметр он помещал сосуд, имеющий две камеры А и В, соединённые перекрытой краном трубкой. Он наполнил камеру А газом, а в камере В был создан вакуум. После выравнивания температуры всех частей системы кран открыли. Вследствие этого газ поступал из А в В до тех пор, пока давление в камерах не выровнялось. При этом Джоуль обнаружил лишь очень незначительное изменение температуры. Это означало, что практически не происходил переход тепла от калориметра к камере и наоборот. Предполагается, что если бы этот опыт был выполнен с идеальным газом, то изменения температуры не было бы вовсе.

Применим теперь первый закон термодинамики к описанному выше процессу.

Т. к. Q = 0, то для системы из двух камер и заключенного в них газа имеем:

DU + W = 0, где W — работа, совершаемая системой и DU — изменение внутренней энергии системы. Т. к. суммарный объём камер А и В, составляющих систему, не изменился, = 0. Поэтому и DU = 0, т. е. энергия системы и, следовательно, газа не изменяется, хотя внутри системы газ сначала занимал только объём А, а в конце процесса заполнял обе камеры А и В. Другими словами, внутренняя энергия идеального газа является функцией только температуры и не зависит от объёма и давления.

Из закона Гей-Люссака‑Джоуля следует, что для идеальных газов:

и

Следовательно, калорический коэффициент (смотри уравнение (I, 27)) в этом случае численно равен внешнему давлению:

l = P (I, 40)

Подставив значение l в уравнение (I, 38) и принимая во внимание, что из уравнения Менделеева‑Клапейрона для одного моля идеального газа , окончательно получим:

, если принять во внимание постоянство R и P. Таким образом, мы получили известное уравнение Майера, устанавливающего соотношение между мольной теплоёмкостью идеального газа при постоянном давлении и мольной теплоёмкостью газа при постоянном объёме:

CP – CV =R (I, 41)

Аналогичным образом найдем значение калорического коэффициента h для идеального газа:

, (I, 42)

если принять во внимание постоянство R и Т.

С учётом полученных результатов выражение первого закона термодинамики через калорические коэффициенты для идеального газа будет иметь следующий вид:

δQ = PdV + CVdT и (I, 43)

dQ = -VdP + CPdT (I, 44)

Из кинетической теории газов следует, что:

для одноатомных газов (He, Ar, Ne и т. д.)

для двухатомных газов (H2, N2, O2, CO и т. д.) и многоатомных газов, имеющих линейное строение (например, СО2, С2Н2 и т. д.)

для многоатомных газов нелинейного строения (NH3, CH4, H2S и т. д.)

– Конец работы –

Эта тема принадлежит разделу:

ФИЗИЧЕСКАЯ ХИМИЯ

На сайте allrefs.net читайте: "ФИЗИЧЕСКАЯ ХИМИЯ"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Применение первого закона термодинамики к идеальному газу.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет физической химии и её значение
Взаимосвязь химических и физических явлений изучает физическая химия. Этот раздел химии является пограничным между химией и физикой. Пользуясь теоретическими и экспериментальными методами об

Краткий очерк истории развития физической химии
Термин «физическая химия» и определение этой науки впервые были даны М.В.Ломоносовым, который в 1752-1754 гг. читал студентам Академии наук курс физической химии и оставил рукопись этого курса «Вве

Энергия. Закон сохранения и превращения энергии
Неотъемлемым свойством (атрибутом) материи является движение; оно неуничтожимо, как и сама материя. Движение материи проявляется в разных формах, которые могут переходить одна в другую. Мерой движе

Предмет, метод и границы термодинамики
Сосредотачивая своё внимание на теплоте и работе, как формах перехода энергии при самых различных процессах, термодинамика вовлекает в круг своего рассмотрения многочисленные энергетические зависим

Теплота и работа
Изменения форм движения при его переходе от одного тела к другому и соответствующие превращения энергии весьма разнообразны. Формы же самого перехода движения и связанных с ним превращений энергии

Эквивалентность теплоты и работы
Постоянное эквивалентное отношение между теплотой и работой при их взаимных переходах установлено в классических опытах Д.П.Джоуля (1842-1867). Типичный эксперимент Джоуля заключается в следующем (

Внутренняя энергия
Для некругового процесса равенство (I, 1) не соблюдается, так как система не возвращается в исходное состояние. Вместо этого равенства для некругового процесса можно записать (опуская коэффициент

Первый закон термодинамики
Первый закон (первое начало) термодинамики непосредственно связан с законом сохранения энергии. Он позволяет рассчитывать баланс энергии при протекании различных процессов, в том числе и химических

Уравнения состояния
Многие свойства системы, находящейся в равновесии, и составляющих её фаз являются взаимозависимыми. Изменение одного из них вызывает изменение других. Количественные функциональные зависимости межд

Работа различных процессов
Под названием работы объединяются многие энергетические процессы; общим свойством этих процессов является затрата энергии системы на преодоление силы, действующей извне. К таким процессам относится

Теплоёмкость. Вычисление теплоты различных процессов
Опытное определение удельной (с) или мольной (С) теплоёмкости тела заключается в измерении теплоты Q, поглощаемой при нагревании одного грамма или одного моля вещества н

Калорические коэффициенты
Внутренняя энергия системы U, будучи функцией состояния, является функцией независимых переменных (параметров состояния) системы. В простейших системах будем рассматривать внутренню

Адиабатические процессы в газах
Говорят, что термодинамическая система совершает адиабатический процесс, если он обратим и если система термически изолирована, так что во время процесса не происходит теплообмена между системой и

Энтальпия
Уравнение первого закона термодинамики для процессов, где совершается только работа расширения, приобретает вид: δQ = dU + PdV (I, 51) Если процесс идет при постоянном

Химическая переменная. Формулировка первого закона термодинамики для процессов, сопровождающихся химическими и фазовыми превращениями
Уравнения (I, 27), (I, 28) и ранее приведённые формулировки первого закона термодинамики справедливы для любой равновесной закрытой системы вне зависимости от того, происходят в ней химические или

Термохимия. Закон Гесса
При химических превращениях происходит изменение внутренней энергии системы, обусловленное тем, что внутренняя энергия продуктов реакции отличается от внутренней энергии исходных веществ.

Зависимость теплового эффекта от температуры. Уравнение Кирхгофа.
По закону Гесса можно вычислить тепловой эффект реакции при той температуре, при которой известны теплоты образования или теплоты сгорания всех реагентов (обычно это 298К). Однако, часто воз

Самопроизвольные и несамопроизвольные процессы
Из первого закона термодинамики и вытекающих из него закономерностей обмена энергией между телами при различных процессах нельзя сделать вывода о том, возможен ли, вообще говоря, данный процесс и в

Второй закон термодинамики
Наиболее часто встречающимися и безусловно самопроизвольными являются процессы передачи теплоты от горячего тела к холодному (теплопроводность) и перехода работы в теплоту (трение). Многовековая жи

Методы расчета изменения энтропии
Уравнения (II, 12) и (II, 13), определяющие энтропию, являются единственными исходными уравнениями для термодинамического расчета изменения энтропии системы. Заменяя элементарную теплоту в уравнени

Постулат Планка
По уравнению (II, 3) невозможно вычислить абсолютное значение энтропии системы. Такую возможность дает новое, недоказуемое положение, не вытекающее из двух законов термодинамики, которое было сформ

Абсолютные значения энтропии
Постулат Планка используется при термодинамическом исследовании химических процессов для вычисления абсолютных значений энтропии химических соединений — величин, которые имеют большое значение при

Стандартная энтропия. Изменение энтропии при протекании химической реакции
Энтропию, как и другие термодинамические функции, принято относить к стандартному состоянию вещества. Напомним, что стандартное состояние характеризуется стандартными усло

Статистическая интерпретация энтропии
В основу понятия энтропии как функции состояния положена макроскопическая концепция. Справедливость второго закона термодинамики связана с реальностью необратимых процессов. В отличие от необратимы

Энергия Гельмгольца
Напомним, что второй закон термодинамики определяет критерии самопроиз­вольного протекания процессов в изолированных системах. Однако, подобные условия (отсутствие обмена энергией и веществом с окр

Энергия Гиббса
Желая учесть в общей форме другие виды работы, кроме работы расширения, представим элементарную работу как сумму работы расширения и других видов работы: dW = PdV + dW' (III, 15)

Характеристические функции. Фундаментальные (канонические) уравнения состояния
Ранее мы определили следующие термодинамические функции — свойства системы: внутреннюю энергию U, энтальпию H, энтропию S, энергию Гельмгольца F, энергию Гиббса G

Соотношения Максвелла.
Рассмотрим теперь вторые смешанные производные характеристических функций. Принимая во внимание уравнения (III, 26), можем записать:

Уравнение Гиббса‑Гельмгольца
Уравнение Гиббса-Гельмгольца позволяет определять изменение энергии Гиббса, сопровождающее химические реакции при любой заданной температуре, если известна зависимость теплоты химических реакций от

Энергия Гиббса смеси идеальных газов. Определение химического потенциала.
Энергия Гиббса является экстенсивной функцией, что позволяет рассчитать ее значение для смеси идеальных газов. Представим себе резервуар, разделенный перегородками на секции, как показано

Химический потенциал
Чтобы прояснить смысл понятия «химический потенциал», продифференцируем выражение (III,51) как произведение при постоянных Р и Т:

Фазовые переходы. Уравнение Клапейрона-Клаузиуса.
В системе, состоящей из нескольких фаз чистого вещества, находящихся в равновесии, возможны переходы вещества из одной фазы в другую. Такие переходы называются фазовыми переходами.

Фазовые переходы первого рода. Плавление. Испарение
Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением первых производных по энергии Гиббса (энтропии и объема) при пе

Фазовые переходы второго рода
Фазовый переход второго рода — это равновесный переход вещества из одной фазы в другую, при котором скачкообразно изменяются только вторые производные от энергии Гиббса по температуре и давлению.

Зависимость давления насыщенного пара от температуры
Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рисунка 12, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавл

Общие условия равновесия
Любая закрытая система, находящаяся в равновесии при постоянных давлении и температуре, характеризуется соотношением:

Правило фаз Гиббса
В 1876 г. Гиббс вывел простую формулу, связывающую число фаз (Ф), находящихся в равновесии, число компонентов (К) и число степеней свободы (С) системы. При равновесии должны бы

Применение правила фаз Гиббса к однокомпонентным системам. Диаграммы состояния воды и серы
Для однокомпонентной системы К =1 и правило фаз записывается в виде: С = 3 – Ф Если Ф = 1, то С =2 , говорят, что система бивариантна;

Фазовая диаграмма воды.
Состояние воды изучено в широком диапазоне температур и давлений. При высоких давлениях установлено существование не менее десяти кристаллических модификаций льда. Наиболее изученным является лед I

Фазовая диаграмма серы.
Кристаллическая сера существует в виде двух модификаций — ромбической (Sр) и моноклинной (Sм). Поэтому возможно существование четырех фаз: ромбической, мо

Закон действующих масс. Константа равновесия для газофазных реакций
Допустим, что между газообразными веществами А1, А2 … Аi, А’1, А’2 … А’i протекает химически обратимая реакция по уравнению:

Уравнение изотермы химической реакции
Предположим, в смеси идеальных газов протекает химическая реакция по уравнению Допустим, что в момент приг

Представление о химическом сродстве
Из того факта, что одни вещества реагируют друг с другом легко и быстро, другие с трудом, третьи — совсем не реагируют, возникает предположение о наличии или отсутствии особого химического сродства

Использование закона действующих масс для расчета состава равновесных смесей
Для определения состава системы при установившемся равновесии, а следовательно, и выхода продукта (продуктов) реакции необходимо знать константу равновесия и состав исходной смеси. Состав

Гетерогенные химические равновесия
Закон действующих масс был выведен с использованием закона состояния идеальных газов и применим в первую очередь к газовым смесям. Однако его без существенных изменений можно применить и к значител

Влияние температуры на химическое равновесие. Уравнение изобары химической реакции
Для определения зависимости K0от температуры в дифференциальной форме воспользуемся уравнением Гиббса‑Гельмгольца (III, 41)

Принцип Ле Шателье‑Брауна
Выведенная из состояния равновесия система вновь возвращается к состоянию равновесия. Ле Шателье и Браун высказали простой принцип, которым можно воспользоваться для предсказания того, в каком напр

Тепловая теорема Нернста
Прямой и простой расчет изменения энергии Гиббса, а, следовательно, и констант равновесия химических реакций не вызывает затруднений, если известны теплота химической реакции и абсолютные значения

Химическое равновесие в неидеальных системах
Закон действующих масс (V, 5) применим, как уже говорилось, лишь к идеальным газам (или идеальным растворам). Для таких систем произведение равновесных относительных парциальных давлений реагирующи

Зависимость энтальпии веществ и тепловых эффектов химических реакций от давления
При рассмотрении зависимости энтальпии от давления воспользуемся хорошо нам известным выражением ее полного дифференциала (III, 27): dH = VdP + TdS Разделим е

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги