рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Принцип Паули

Принцип Паули - Лекция, раздел Электроника, Тепловое излучение В Системе Микрочастиц Проявляются Также Физические Закономерности, Которые Не...

В системе микрочастиц проявляются также физические закономерности, которые не могут быть установлены при анализе движения одной микрочастицы.

Квантовая система, состоящая из одинаковых частиц, например, электронов, протонов, фотонов и т.д., обладает некоторыми новыми свойствами, не имеющими аналога в классической физике. Они связаны с абсолютной тождественностью частиц одного и того же вида. В макромире всегда можно различить два тела по массе, заряду, энергии и т.д. Все эти величины в классической физике считаются изменяющимися непрерывно, так что вопрос о различии параметров частиц сводится к степени точности измерений. Более того, при совпадении всех характеристик частиц одного и того же вида всегда можно отличить частицы друг от друга, постоянно следя за движением каждой частицы по своей траектории.

В микромире имеют место дискретные значения величин, характеризующих микрочастицы. Внутренние параметры у частиц одного вида совершенно одинаковы, так, у всех электронов одинаковы масса, заряд, спин. Если частицы находятся в одинаковых состояниях, то совпадают и параметры состояний: у них одинаковые энергия в связанном состоянии, момент импульса и его проекция, проекция спина. Абсолютное совпадение характеристик микрочастиц одного вида приводит к их тождественности, принципиальной неразличимости. Это положение носит название принципа тождественности частиц и является постулатом квантовой механики системы частиц.

Принцип тождественности связан и с тем, что при тесном сближении невозможно проследить за каждой частицей в отдельности вследствие неопределенности положений частиц в пространстве. В случае столкновения классических тел всегда можно установить, какое из них отскочило вверх или вниз (рис.9.1.а). Для квантовых объектов вместо траекторий приходится рассматривать «трубку», в которой движется волновой пакет (рис.9.1.б) Если нет перекрывания волновых пакетов, то частицы можно различить по их положению в пространстве.

Однако при заимодействии или даже при сближении без взаимодействия трубки пересекаются и нельзя установить, где какая частица находится. Поэтому после соударения можно сказать только, что одна из частиц полетела вверх, а другая – вниз. В микроскопической системе, например, в атоме, волновые функции отдельных частиц (электронов) перекрываются, т.е. отличны от нуля в одних и тех же точках пространства. Поэтому при одинаковых характеристиках частицы совершенно неотличимы друг от друга.

Принцип тождественности приводит к важнейшему выводу: в силу абсолютной неразличимости одного и того же вида перестановка местами любых двух частиц в системе не приводит к изменению физического состояния системы.

Посмотрим, какие ограничения накладывает принцип тождественности на операторы физических величин функции состояния системы. Для этого учтем, что перестановка частиц в системе отображается в операторах и функциях состояния перестановкой соответствующих координат. Так, перестановка j -ой и k -ой частиц означает перестановку xj и xk.

Операторы физических величин должны быть симметричными относительно индексов частиц одного сорта, т.е. они не должны зависеть от нумерации этих частиц в системе. Этому правилу удовлетворяют все операторы, введенные ранее для системы.

Волновая функция системы при перестановке аргументов, относящихся к двум разным частицам, может изменяться только на физически несущественный фазовый множитель е. Поэтому для функции состояния системы должно выполняться равенство:

.

Сделаем вторую перестановку координат двух рассматриваемых частиц в правой части этого равенства:

,

отсюда

Следовательно, при перестановке координат любых двух частиц волновая функция либо только меняет знак, либо не изменяется. Функции первого типа называются антисимметричными, а второго - симметричными (по отношению к перестановке частиц местами).

Симметрия функций состояния не зависит от взаимодействия и движения частиц в системе.

– Конец работы –

Эта тема принадлежит разделу:

Тепловое излучение

Лекция... Двойственная корпускулярно волновая природа... Частиц вещества Гипотеза де Бройля...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Принцип Паули

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Тепловое излучение
1.1.Закон Кирхгофа Тепловое излучение – это испускание электромагнитных волн за счёт внутренней энергии тел. Тепловое излучение имеет место при любой температуре. При низких температурах о

Эффект Комптона
Комптон (1923) открыл явление, в кото­ром можно было наблюдать, что фотону присущи энергия и им­пульс. Результаты этого опыта — еще одно убедительное под­тверждение гипотезы Эйнштейна о квантовой п

Тормозное рентгеновское излучение
Если энергия кванта значительно превышает работу вы­хода А, то уравнение Эйнштейна принимает более простой в

Корпускулярно-волновой дуализм света
  Эффект Комптона и фотоэффект подтверждает корпускулярную природу света. Свет ведет себя как поток частиц – фотонов. Тогда как же частица может обнаруживать свойства, присущие класси

Гипотеза де Бройля
В 1924 г. французский физик Луи де Бройль выдвинул гипотезу, согласно которой движение электрона, или какой-либо другой частицы, связано с волновым процессом. Длина волны этого процесса:

Свойства волн де Бройля
  Рассмотрим движение свободного электрона. По де Бройлю, ему соответствует длина волны:

Лекция 5
3. ЭЛЕМЕНТЫ КВАНТОВОЙ МЕХАНИКИ 3.1.Волновая функция Всякая микрочастица – это образование особого рода, сочетающее в себе свойства и частицы, и волны. Отличие микрочастицы от волн

Принцип неопределенности
В классической механике состояние частицы задают координатами, импульсом, энергией и т.п. Это динамические переменные. Микрочастицу описывать такими динамическими переменными нельзя. Особенность ми

Уравнение Шредингера
В 1926 г. Шредингер получил свое знаменитое уравнение. Это основное уравнение квантовой механики, основное предположение, на котором основана вся квантовая механика. Все вытекающие из этого уравнен

Ядерная модель атома
Любой атом состоит из положительно заряженного ядра и окружающей его электронной оболочки. Размеры ядра менее 10-12 см, размеры же самого атома, определяемые электронной оболочкой, поряд

Постулаты Бора. Опыты Франка и Герца
Постулаты Бора. Абсолютная неустойчивость планетарной модели Резерфорда и вместе с тем удивительная закономерность атомных спектров, и в частности их дискретность, привели Н. Бора

Боровская модель атома водорода
Чтобы получить согласие с результатами наблюдений, Бор предположил, что электрон в атоме водорода движется только по тем круговым орбитам, для которых его момент импульса M=nħ,

Согласно 2-му закону Ньютона
(4.13) где m —масса электрона. Отсюда кинетическая энергия электрона

Тогда постоянная Ридберга
Как видим, постоянная Ридберга зависит и от массы ядра. Для атома водорода, ядром которого является прото

Четность, закон сохранения четности
Кроме однородности и изотропности, имеется еще один вид симметрии пространства. Соответствующую ему операцию нельзя свести к совокупности бесконечно малых преобразований координат. Это операция инв

Частица в потенциальном ящике с бесконечно высокими стенками
  Рассмотрим частицу, находящуюся в бесконечно глубокой одномерной потенциальной яме. Будем считать, что частица может двигаться только в направлении оси ОХ. Стенки ямы бесконе

Движение частицы в потенциальном ящике конечной глубины
Рассмотрим поведение частицы в потенциальном ящике конечной глубины. Потенциальная энергия частицы в ящике

Прохождение частицы через потенциальный барьер
Рассмотрим частицу, которая движется слева на право, встречая на своем пути потенциальный барьер высоты

Квантово -механическая модель атома водорода
Электрон в атоме водорода движется в поле кулоновской силы электростатического притяжения к ядру. Потенциальная энергия электрона выражается классической формулой:

Это уравнение необходимо решить для нахождения неполной радиальной функции R(r).
Уравнение (7.7) имеет решение, удовлетворяющее необходимому условию квадратной интегрируемой функции состояния, если выполняется равенство:

Орбитальный магнитный момент электрона
Установим вид оператора магнитного момента движущейся заряженной микрочастицы, опираясь на критерии соответствия. Магнитный момент μ частицы, движущейся по круговой траектории, связан

Спин электрона
Эксперименты показали, что у электрона, кроме орбитального магнитного момента, есть ещё собственный магнитный момент, названный спиновым

Валентным электроном
Атомы щелочных металлов имеют один внешний электрон и заполненные внутренние оболочки. Этот внешний электрон движется в электрическом поле атомного остатка, т.е. ядра и заполненных электронных обол

Ширина спектральных линий
Из возбужденного состояния атом может спонтанно перейти в более низкое энергетическое состояние. Время τ, за которое число атомов, находящихся в данном возбужденном состоянии, уменьшает

Мультиплетность спектров
Спин-орбитальное взаимодействие Исследования спектров щелочных металлов показали, что каждая линия этих спектров является двойной (дуплет). Структура спектра, от

Многоэлектронного атома
Каждый электрон в атоме обладает орбитальным моментом импульса и собственным (спиновым) моментом импульса

Магнитный момент атома
Итак, с механическим моментом атома М связан магнитный момент μ. Отношение называется гиромагни

Векторная модель атома
При построении такой модели механические и магнитные моменты атома изображаются в виде направленных отрезков. Строго говоря, вследствие неопределенности направлений векторов

Волновая функция системы микрочастиц
Квантовая механика системы микрочастиц строится путем обобщения основных понятий и законов механики одной частицы. Состояние системы описывается волновой функцией: Ψ = Ψ(

Лекция 14
9.3. Периодическая система элементов Д.И. Менделеева В 1869 г. Менделеев открыл периодический закон изменения химиче­ских и физических свойств элементов в зависимости от их атомных масс. Х

Многоэлектронные атомы
Рассмотрим, как меняются физико-химические свойства вещества с ростом их порядкового номера z. z = 1 – атом водорода. Один электрон находится в состоянии с п = 1, энергия эле

Эффекты Зеемана и Штарка
Эффект Зеемана состоит в расщеплении спектральных линий и энерге­тических уровней во внешнем магнитном токе. Спектральная линия с частотой

Рентгеновские спектры
Различают два вида рентгеновского излучения - тормозное и характе­ристическое. Тормозное излучение получается при не слишком больших энергиях бомбардирующих атом электронов. Это излучение

Ионная и ковалентная связь. Молекула водорода. Обменный интеграл
Ограничимся рассмотрением только двухатомных молекул. Различают два вида связи между атомами в молекулах. Один из них осуществляется в том случае, когда электроны в молекуле можно разделить на две

Молекулярные спектры
Молекулярные спектры состоят из полос. Полосы состоят из большого числа тесно расположенных линий. Поэтому спектры молекул называют по­лосатыми. В зависимости от того, изменение каких видов энергии

Генераторы когерентного света
Слово лазер является аббревиатурой выражения “Light amplification by stimulated of radiation”, что означает “усиление света в результате индуцированного (вынужденного) излучения фотонов. В

Принцип действия лазеров
Рассмотрим ансамбль, состоящий из N атомов в единице объема, на который действует электромагнитное излучение с частотой

Схемы накачки
Рассмотрим процессы получения в данной среде инверсной населенности. На первый взгляд может показаться, что инверсию можно создать при взаимодействии среды с достаточно мощной электромагнитной волн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги