рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Гипотеза де Бройля

Гипотеза де Бройля - Лекция, раздел Электроника, Тепловое излучение В 1924 Г. Французский Физик Луи Де Бройль Выдвинул Гипотезу, Согласно Которой...

В 1924 г. французский физик Луи де Бройль выдвинул гипотезу, согласно которой движение электрона, или какой-либо другой частицы, связано с волновым процессом. Длина волны этого процесса:

а частота ω = Е/ħ, т.е. корпускулярно-волновой дуализм присущ всем без исключения частицам.

Если частица имеет кинетическую энергию Е, то ей соответствует длина волны де Бройля:

Для электрона, ускоряемого разностью потенциалов , кинетическая энергия ,и длина волны

Å. (2.1)

 

Опыты Дэвиссона и Джермера (1927). Идея их опытов за­ключалась в следующем. Если пучок электронов обладает вол­новыми свойствами, то можно ожидать, даже не зная механиз­ма отражения этих волн, что их отражение от кристалла будет иметь такой же интерференционный характер, как у рентге­новских лучей.

В одной серии опытов Дэвиссона и Джермера для обнаруже­ния дифракционных максимумов (если таковые есть) измеря­лись ускоряющее напряжение электронов и одновременно положение детектора D (счетчика отраженных электронов). В опы­те использовался монокристалл никеля (кубической системы), сошлифованный так, как показано на рис.2.1.

Если его повернуть вокруг вертикаль­ной оси в положение, соответствующее ри­сунку, то в этом положении сошлифованная поверхность покрыта правильными рядами атомов, перпендикулярными к плоскости падения (плоскости рисунка), расстояние между которыми d=0,215 нм.

Детектор перемещали в плоскости падения, меняя угол θ. При угле θ = 50° и ускоряю­щем напряжении U=54В наблюдался осо­бенно отчётливый максимум отраженных электронов, полярная диаграмма которого показана на рис.2.2.

Этот максимум можно истолковать как интерференционный максимум первого по­рядка от плоской дифракционной решетки с периодом

, (2.2)

что видно из рис.2.3. На этом рисун­ке каждая жирная точка представляет собой проекцию цепочки атомов, расположенных на прямой, перпендикулярной плоскости рисунка. Пе­риод d может быть измерен независи­мо, например, по дифракции рентге­новских лучей.

Вычисленная по формуле (2.1) дебройлевская длина волны для U= 54В равна 0,167 нм. Соответству­ющая же длина волны, найденная из формулы (2.2), равна 0,165 нм. Совпадение настолько хорошее, что полученный результат следует признать убедительным под­тверждением гипотезы де Бройля.

Другая серия опытов Дэвиссона и Джермера состояла в из­мерении интенсивности I отраженного электронного пучка при заданном угле падения, но при различных значениях ускоряю­щего напряжения U.

Теоретически должны появиться при этом интерференцион­ные максимумы отражения подобно отражению рентгеновских лучей от кристалла. От различных кристаллических плоскостей кристалла в результате дифракции падающего излучения на атомах исходят волны, как бы испытавшие зеркальное отраже­ние от этих плоскостей. Данные волны при интерференции усиливают друг друга, если выполняется условие Брэгга-Вульфа:

, m=1,2,3,…, (2.3)

где d — межплоскостное расстояние, α — угол скольжения.

Напомним вывод этой формулы. Из рис. 2.4 видно, что разность хода двух волн, 1 и 2, отразившихся зеркально от соседних атомных слоев, АВС =. Следователь­но, направления, в которых возникают ин­терференционные максимумы, определяют­ся условием (2.3).

Теперь подставим в формулу (2.3) выра­жение (2.1) для дебройлевской длины вол­ны. Поскольку значения α и d экспериментаторы оставляли неизменными, то из формулы (2.3) следует, что

~т, (2.4)

т.е. значения , при которых образуются максимумы отра­жения, должны быть пропорциональны целым числам т = 1, 2, 3, ..., другими словами, находиться на одинаковых расстояни­ях друг от друга.

Это и было проверено на опыте, результаты которого пред­ставлены на рис.2. 5, где U представлено в вольтах. Видно, что максимумы интен­сивности I почти равноудалены друг от друга (такая же карти­на возникает и при дифракции рентгеновских лучей от крис­таллов).

Полученные Дэвиссоном и Джермером результаты весьма убедительно подтверждают гипотезу де Бройля. В теоретическом отношении, как мы видели, анализ дифракции дебройлевских волн полностью совпадает с дифрак­цией рентгеновского излучения.

Итак, характер зависимости (2.4) экспериментально подтвердился, однако наблюдалось некоторое расхождение с пред­сказаниями теории. А именно, между положениями экспери­ментальных и теоретических максимумов (последние показаны стрелками на рис. 2.5) наблюдается систематическое расхожде­ние, которое уменьшается с увеличением ускоряющего напря­жения U. Это расхождение, как выяснилось в дальнейшем, обу­словлено тем, что при выводе формулы Брэгга-Вульфа не было учтено преломление дебройлевских волн.

О преломлении дебройлевских волн. Показатель преломле­ния п дебройлевских волн, как и электромагнитных, определя­ется формулой

, (2.5)

где и — фазовые скорости этих волн в вакууме и среде (кристалле).

Фазовая ско­рость дебройлевcкой волны — принципиально ненаблюдаемая величина. Поэтому формулу (2.5) следует преобразовать так, чтобы показатель преломления п можно было выразить через отношение измеряемых величин. Это можно сделать следующим образом. По определению, фазовая скорость

, (2.6)

где k — волновое число. Считая аналогично фотонам, что частота и дебройлевских волн тоже не меняется при переходе границы раздела сред (если такое предположение несправедливо, то опыт неизбежно укажет на это), представим (2.5) с уче­том (2.6) в виде

(2.7)

Попадая из вакуума в кристалл (металл), электроны оказыва­ются в потенциальной яме. Здесь их кине­тическая энергия возрастает на «глубину» потенциальной ямы (рис. 2.6). Из формулы (2.1), где , следует, что λ~ Поэтому выражение (2.7) можно переписать так:

(2.8)

где U0внутренний потенциал кристалла. Видно, что чем бо­льше U (относительно ), тем п ближе к единице. Таким обра­зом, п проявляет себя особенно при малых U, и формула Брэг­га-Вульфа принимает вид

(2.9)

Убедимся, что формула Брэгга-Вульфа (2.9) с учетом пре­ломления действительно объясняет положения максимумов ин­тенсивности на рис. 2.5. Заменив в (2.9) п и λ согласно формулам (2.8) и (2.1) их выражениями через ускоряющую разность потенциалов U, т.е.

(2.10)

получим:

(2.11)

Теперь учтем, что распределение на рис.2.5 получено для никеля при значениях U0=15 B, d=0,203 нм и α=80°. Тогда (2.11) после несложных преобразований можно перепи­сать так:

(2.12)

Вычислим по этой формуле значение , например, для макси­мума третьего порядка (m = 3), для которого расхождение с формулой Брэгга-Вульфа (2.3) оказалось наибольшим:

Совпадение с действительным положением максимума 3-го по­рядка не требует комментариев.

Итак, опыты Дэвиссона и Джермера следует признать блес­тящим подтверждением гипотезы де Бройля.

Опыты Томсона и Тартаковского. В этих опытах пучок элек­тронов пропускался через поликристаллическую фольгу (по ме­тоду Дебая при изучении дифракции рентгеновского излучения). Как и в случае рентгеновского излучения, на фотопластинке, рас­положенной за фольгой, наблюдалась система дифракционных колец. Сходство обеих картин поразительно. Подозрение, что система этих колец порождается не электронами, а вторичным рентгеновским излучением, возникающим в результате паде­ния электронов на фольгу, легко рассеивается, если на пути рассеянных электронов создать магнитное поле (поднести по­стоянный магнит). Оно не влияет на рентгеновское излучение. Такого рода проверка показала, что интерференционная карти­на сразу же искажалась. Это однозначно свидетельствует, что мы имеем дело именно с электронами.

Г. Томсон осуществил опыты с быстрыми электронами (де­сятки кэВ), II.С. Тарковский — со сравнительно медленными электронами (до 1,7 кэВ).

Опыты с нейтронами и молекулами. Для успешного наблю­дения дифракции волн на кристаллах необходимо, чтобы длина волны этих волн была сравнима с расстояниями между узлами кристаллической решетки. Поэтому для наблюдения дифракции тяжелых частиц необходимо пользоваться частицами с достаточ­но малыми скоростями. Соответствующие опыты по дифракции нейтронов и молекул при отражении от кристаллов были проде­ланы и также полностью подтвердили гипотезу де-Бройля в при­менении и к тяжелым частицам.

Благодаря этому было экспериментально доказано, что вол­новые свойства являются универсальным свойством всех час­тиц. Они не обусловлены какими-то особенностями внутренне­го строения той или иной частицы, а отражают их общий закон движения.

Опыты с одиночными электронами. Описанные выше опыты выполнялись с использованием пучков частиц. Поэтому возни­кает естественный вопрос: наблюдаемые волновые свойства вы­ражают свойства пучка частиц или отдельных частиц?

Чтобы ответить на этот вопрос, В. Фабрикант, Л. Биберман и Н. Сушкин осуществили в 1949 г. опыты, в которых применялись столь слабые пучки электронов, что каждый электрон проходил через кристалл заведомо поодиночке и каждый рассеянный элект­рон регистрировался фотопластинкой. При этом оказалось, что отдельные электроны по­падали в различные точки фотопластинки со­вершенно беспорядочным на первый взгляд образом (рис.2.7,а). Между тем при доста­точно длительной экспозиции на фотоплас­тинке возникала дифракционная картина (рис.2.7, б), абсолютно идентичная картине дифракции от обычного электронного пучка. Так было доказано, что волновыми свойст­вами обладают и отдельные частицы.

Таким образом, мы имеем дело с микро­объектами, которые обладают одновременно как корпускулярными, так и волновыми свойствами. Это позволяет нам в дальней­шем говорить об электронах, но выводы, к которым мы придем, имеют совершенно об­щий смысл и в равной степени применимы к любым частицам.

Из формулы де Бройля следовало, что волновые свойства должны быть присущи любой частице вещества, имеющей массу и скорость . В 1929г. опыты Штерна доказали, что формула де Бройля справедлива и для пучков атомов и молекул. Он получил следующее выражение для длины волны:

 

Ǻ,

где μ – молярная масса вещества, NА – число Авогадро, R – универсальная газовая постоянная, Т – температура.

При отражении пучков атомов и молекул от поверхностей твердых тел должны наблюдаться дифракционные явления, которые описываются теми же соотношениями, что и плоская (двумерная) дифракционная решетка. Опыты показали, что кроме частиц, рассеянных под углом, равным углу падения, наблюдаются максимумы числа отраженных частиц под другими углами, определяемыми формулами двумерной дифракционной решетки.

Формулы де Бройля оказались справедливыми также для нейтронов. Это подтвердили опыты по дифракции нейтронов на приемниках.

Таким образом, наличие волновых свойств у движущихся частиц, обладающих массой покоя, есть универсальное явление, не связанное с какой-либо спецификой движущейся частицы.

Отсутствие волновых свойств у макроскопических тел объясняется следующим образом. Подобно той роли, кото­рую играет скорость света при решении вопроса о применимо­сти ньютоновской (нерелятивистской) механики, существует критерий, показывающий в каких случаях можно ограничиться классическими представлениями. Этот критерий связан с постоянной Планка ħ. Физическая размерность ħ равна (энергия)x(время), или (им­пульс)x(длина), или (момент импульса). Величину с такой размерностью называют действием. Постоянная Планка явля­ется квантом действия.

Если в данной физической системе значение некоторой характерной величи­ны Н с размерностью действия сравнимо с ħ, то поведение этой системы может быть описано только в рамках квантовой тео­рии. Если же значение Н очень велико по сравнению с ħ, то поведение системы с высокой точностью описывают законы клас­сической физики.

Отметим, однако, что данный критерий имеет приближен­ный характер. Он указывает лишь, когда следует проявлять осторожность. Малость действия Н не всегда свидетельствует о полной неприменимости классического подхода. Во многих случаях она может дать некоторое качественное представление о поведении системы, которое можно уточнить с помощью квантового подхода.

 

– Конец работы –

Эта тема принадлежит разделу:

Тепловое излучение

Лекция... Двойственная корпускулярно волновая природа... Частиц вещества Гипотеза де Бройля...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Гипотеза де Бройля

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Тепловое излучение
1.1.Закон Кирхгофа Тепловое излучение – это испускание электромагнитных волн за счёт внутренней энергии тел. Тепловое излучение имеет место при любой температуре. При низких температурах о

Эффект Комптона
Комптон (1923) открыл явление, в кото­ром можно было наблюдать, что фотону присущи энергия и им­пульс. Результаты этого опыта — еще одно убедительное под­тверждение гипотезы Эйнштейна о квантовой п

Тормозное рентгеновское излучение
Если энергия кванта значительно превышает работу вы­хода А, то уравнение Эйнштейна принимает более простой в

Корпускулярно-волновой дуализм света
  Эффект Комптона и фотоэффект подтверждает корпускулярную природу света. Свет ведет себя как поток частиц – фотонов. Тогда как же частица может обнаруживать свойства, присущие класси

Свойства волн де Бройля
  Рассмотрим движение свободного электрона. По де Бройлю, ему соответствует длина волны:

Лекция 5
3. ЭЛЕМЕНТЫ КВАНТОВОЙ МЕХАНИКИ 3.1.Волновая функция Всякая микрочастица – это образование особого рода, сочетающее в себе свойства и частицы, и волны. Отличие микрочастицы от волн

Принцип неопределенности
В классической механике состояние частицы задают координатами, импульсом, энергией и т.п. Это динамические переменные. Микрочастицу описывать такими динамическими переменными нельзя. Особенность ми

Уравнение Шредингера
В 1926 г. Шредингер получил свое знаменитое уравнение. Это основное уравнение квантовой механики, основное предположение, на котором основана вся квантовая механика. Все вытекающие из этого уравнен

Ядерная модель атома
Любой атом состоит из положительно заряженного ядра и окружающей его электронной оболочки. Размеры ядра менее 10-12 см, размеры же самого атома, определяемые электронной оболочкой, поряд

Постулаты Бора. Опыты Франка и Герца
Постулаты Бора. Абсолютная неустойчивость планетарной модели Резерфорда и вместе с тем удивительная закономерность атомных спектров, и в частности их дискретность, привели Н. Бора

Боровская модель атома водорода
Чтобы получить согласие с результатами наблюдений, Бор предположил, что электрон в атоме водорода движется только по тем круговым орбитам, для которых его момент импульса M=nħ,

Согласно 2-му закону Ньютона
(4.13) где m —масса электрона. Отсюда кинетическая энергия электрона

Тогда постоянная Ридберга
Как видим, постоянная Ридберга зависит и от массы ядра. Для атома водорода, ядром которого является прото

Четность, закон сохранения четности
Кроме однородности и изотропности, имеется еще один вид симметрии пространства. Соответствующую ему операцию нельзя свести к совокупности бесконечно малых преобразований координат. Это операция инв

Частица в потенциальном ящике с бесконечно высокими стенками
  Рассмотрим частицу, находящуюся в бесконечно глубокой одномерной потенциальной яме. Будем считать, что частица может двигаться только в направлении оси ОХ. Стенки ямы бесконе

Движение частицы в потенциальном ящике конечной глубины
Рассмотрим поведение частицы в потенциальном ящике конечной глубины. Потенциальная энергия частицы в ящике

Прохождение частицы через потенциальный барьер
Рассмотрим частицу, которая движется слева на право, встречая на своем пути потенциальный барьер высоты

Квантово -механическая модель атома водорода
Электрон в атоме водорода движется в поле кулоновской силы электростатического притяжения к ядру. Потенциальная энергия электрона выражается классической формулой:

Это уравнение необходимо решить для нахождения неполной радиальной функции R(r).
Уравнение (7.7) имеет решение, удовлетворяющее необходимому условию квадратной интегрируемой функции состояния, если выполняется равенство:

Орбитальный магнитный момент электрона
Установим вид оператора магнитного момента движущейся заряженной микрочастицы, опираясь на критерии соответствия. Магнитный момент μ частицы, движущейся по круговой траектории, связан

Спин электрона
Эксперименты показали, что у электрона, кроме орбитального магнитного момента, есть ещё собственный магнитный момент, названный спиновым

Валентным электроном
Атомы щелочных металлов имеют один внешний электрон и заполненные внутренние оболочки. Этот внешний электрон движется в электрическом поле атомного остатка, т.е. ядра и заполненных электронных обол

Ширина спектральных линий
Из возбужденного состояния атом может спонтанно перейти в более низкое энергетическое состояние. Время τ, за которое число атомов, находящихся в данном возбужденном состоянии, уменьшает

Мультиплетность спектров
Спин-орбитальное взаимодействие Исследования спектров щелочных металлов показали, что каждая линия этих спектров является двойной (дуплет). Структура спектра, от

Многоэлектронного атома
Каждый электрон в атоме обладает орбитальным моментом импульса и собственным (спиновым) моментом импульса

Магнитный момент атома
Итак, с механическим моментом атома М связан магнитный момент μ. Отношение называется гиромагни

Векторная модель атома
При построении такой модели механические и магнитные моменты атома изображаются в виде направленных отрезков. Строго говоря, вследствие неопределенности направлений векторов

Волновая функция системы микрочастиц
Квантовая механика системы микрочастиц строится путем обобщения основных понятий и законов механики одной частицы. Состояние системы описывается волновой функцией: Ψ = Ψ(

Принцип Паули
В системе микрочастиц проявляются также физические закономерности, которые не могут быть установлены при анализе движения одной микрочастицы. Квантовая система, состоящая из одинаковых час

Лекция 14
9.3. Периодическая система элементов Д.И. Менделеева В 1869 г. Менделеев открыл периодический закон изменения химиче­ских и физических свойств элементов в зависимости от их атомных масс. Х

Многоэлектронные атомы
Рассмотрим, как меняются физико-химические свойства вещества с ростом их порядкового номера z. z = 1 – атом водорода. Один электрон находится в состоянии с п = 1, энергия эле

Эффекты Зеемана и Штарка
Эффект Зеемана состоит в расщеплении спектральных линий и энерге­тических уровней во внешнем магнитном токе. Спектральная линия с частотой

Рентгеновские спектры
Различают два вида рентгеновского излучения - тормозное и характе­ристическое. Тормозное излучение получается при не слишком больших энергиях бомбардирующих атом электронов. Это излучение

Ионная и ковалентная связь. Молекула водорода. Обменный интеграл
Ограничимся рассмотрением только двухатомных молекул. Различают два вида связи между атомами в молекулах. Один из них осуществляется в том случае, когда электроны в молекуле можно разделить на две

Молекулярные спектры
Молекулярные спектры состоят из полос. Полосы состоят из большого числа тесно расположенных линий. Поэтому спектры молекул называют по­лосатыми. В зависимости от того, изменение каких видов энергии

Генераторы когерентного света
Слово лазер является аббревиатурой выражения “Light amplification by stimulated of radiation”, что означает “усиление света в результате индуцированного (вынужденного) излучения фотонов. В

Принцип действия лазеров
Рассмотрим ансамбль, состоящий из N атомов в единице объема, на который действует электромагнитное излучение с частотой

Схемы накачки
Рассмотрим процессы получения в данной среде инверсной населенности. На первый взгляд может показаться, что инверсию можно создать при взаимодействии среды с достаточно мощной электромагнитной волн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги