рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные элементы задачи. Условия регулярности

Основные элементы задачи. Условия регулярности - раздел Изобретательство, При разработке перспективных и оптимизации существующих информационно-измерительных систем   Пусть Известно, Что Оцениваемый Процесс (Вектор Состояния) На...

 

Пусть известно, что оцениваемый процесс (вектор состояния) на отрезке времени [t0, T] характеризуется вектором . Для описания данного процесса воспользуемся приближенной математической моделью G. В отличие от вектор состояния, соответствующий модели G, будем обозначать через .

К модели G предъявляются следующие требования:

модель G должна однозначным образом описывать оцениваемый процесс;

модель G должна в некотором смысле наиболее точно описывать оцениваемый процесс (адекватность модели);

модель G должна быть достаточно простой в вычислительном отношении.

Функциональное соответствие между вектором состояния и вектором измеряемых параметров у задается математической моделью S. В большинстве случаев

(1.1)

Поскольку погрешности, возникающие при задании модели S, незначительны, то считаем, что вектор действительных измеряемых параметров определяется в соответствии с уравнением

. (1.2)

Для полного описания условий функционирования системы обработки измерительной информации, характеризующих способ комбинации ошибок измерений с измеряемыми параметрами и вероятностные характеристики ошибок измерений, используется модель Q. В простейшем случае данной модели отвечает следующее функциональное соответствие:

(1.3)

где - вектор результатов измерений; h - вектор ошибок измерений.

Измерения на отрезке времени могут производиться как в дискретные моменты времени ti, , так и непрерывно В первом случае qK-мерный вектор ошибок измерений полностью характеризуется плотностью вероятности р(h). Если плотность вероятности р(h) является гауссовской, то будем писать , где - вектор математических ожиданий ошибок измерений и Kh - ковариационная матрица. Во втором случае (непрерывное наблюдение) случайный процесс h = h(t) характеризуется соответствую­щим функционалом плотности вероятности.

Следующим элементом задачи оценивания является критерий качества К. Наибольшее распространение в настоящее время получил критерий минимума среднего риска (байесов критерий). Данный критерий применяется в условиях полной априорной определенности. Если же априорное распределение неизвестно, используются другие критерии: минимума условного риска, максимального правдоподобия, минимаксный.

Полагаем, что система обработки измерительной информации характеризуется нерандомизированным решающим правилом когда устанавливается детерминированная функциональная связь меж­ду оценкой и вектором измерений .

Условным риском называют риск , усредненный по условному распределению т.е. по функции правдоподобия

(1.4)

Важным является понятие апостериорного риска, т.е. риска , усредненного по апостериорной плотности вероятности:

(1.5)

где k - нормировочный коэффициент.

Апостериорный риск определяется как

(1.6)

Средний риск, т.е. риск, усредненный по и , связан с апостериорным риском простой зависимостью

(1.7)

Отсюда следует, что байесов критерий оптимальности - критерий минимума среднего риска - эквивалентен критерию минимума апостериорного риска. Это означает, что оптимальный байесов алгоритм должен выбираться из условия минимизации функционала

(1.8)

т.е.

(1.9)

Конкретный алгоритм зависит от выбранной функции потерь , которая задает меру отклонения получаемого решения от истинного. Очевидно, что функция потерь и риск должны отвечать ряду свойств, при которых обеспечивается корректность применения байесова критерия оптимальности.

 

– Конец работы –

Эта тема принадлежит разделу:

При разработке перспективных и оптимизации существующих информационно-измерительных систем

При разработке перспективных и оптимизации существующих... Среди указанных методов наиболее широкое распространение на практике получил МНК и его различные модификации...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные элементы задачи. Условия регулярности

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие положения
  В работах отечественных и зарубежных ученых неоднократно поднималась проблема разработки единого системного подхода к решению задачи оптимального оценивания. Были сформулированы усл

Адекватность моделей задачи оценивания
  Условие адекватности определяет некоторое отношение на множестве математических моделей. Введем в рассмотрение метрическое пространство

Состоятельность критерия качества
  Полагая и учитывая, что оценка

Интерполяция функций с финитным спектром
  В данном разделе в качестве моделей полезных сигналов используются функции с финитным спектром (ФФС) [29], для которых в соответствии с известной теоремой отсчетов справедливо предс

Аппроксимация функций с финитным спектром
  Рассмотрим теперь возможность аппроксимации с заданной точностью ε > 0 на отрезке [0, T] функции

Аппроксимация функций с нефинитным спектром
  Прежде всего, рассмотрим задачу приближения произвольных функций с конечной полной энергией (т.е. интегрируемых в квадрате на всей оси) при помощи ФФС и конечной полной энергией.

Дифференцирование функций с финитным спектром
  Рассмотрим новый метод N-кратного дифференцирования, базирующийся на применении ряда Котельникова, который по сравнению с известными методами в большой степени ориентирован н

Погрешности дифференцирования функций с финитным спектром
  Для оценки погрешностей дифференцирования введем ограничение на поведение функции при

Дифференцирование функций с нефинитным спектром
  Рассмотрим возможность применения изложенного в предыдущих подразделах математического аппарата для N-кратного дифференцирова­ния функций с нефинитным спектром. Пуст

Дифференцирование финитных функций
  Обратимся теперь к наиболее распространенному в практике случаю, когда дифференцируемые функции являются финитными на временной оси, и, следовательно, не принадлежат классу ФФС.

Математическая постановка задачи
  Пусть функция представима в виде  

Решение задачи
  С учетом (3.1), (3.5), и (3.7), замечая, что , имеем

Оценка методической погрешности
  Дадим теперь оценку методической погрешности оптимального оценивания, обусловленной неадекватностью принятой математической модели (3.1). Пусть истинная функция

Сравнительный анализ разработанного метода с методом наименьших квадратов
  Рассмотрим случай, когда и , следовательно,

Результаты вычислительного эксперимента
  Рассмотрим задачу оптимального оценивания при наличии сингулярной и флуктуационной помех для следующих исходных данных:

Перечень сокращений
В настоящей пояснительной записке применяются следующие обозначения и сокращения: - ФФС – функция с финитным спектром; - МНК

Библиографический список
  1. Березин И.С., Жидков Н.П. Методы вычислений. Т.1.M.: Наука, 1966. 2. Брандин В.Н., Васильев А.А., Худяков С.Т. Основы экспериментальной космической баллистики. М-:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги